Probability distribution type of Canadian annual minimum streamflow / Type de distribution de probabilité du débit minimum annuel au Canada

2005 ◽  
Vol 50 (3) ◽  
Author(s):  
Sheng Yue ◽  
Paul Pilon
2011 ◽  
Vol 243-249 ◽  
pp. 5632-5636
Author(s):  
Ya Li Ma ◽  
Ai Lin Zhang

Probability distribution law of corrosion initiation time of steel in concrete under chloride environment is discussed. Based on the Fick’s second law, by Monte Carlo, frequency distribution, distribution type and probability density is analyzed. The statistic parameters of the factors influencing the probability distribution of corrosion initiation time are studied and the expression for sensitivity analysis of corrosion initiation time is deduced. By sensitivity analysis can know, corrosion initiation time is found to be more sensitive to cover than the diffusion coefficient, and more sensitive to surface chloride concentration than the critical chloride level. The analysis of the paper perfects the methods of predicting the corrosion initiation time.


2020 ◽  
Vol 13 (5) ◽  
pp. 1097-1119
Author(s):  
Mohammed Hammad ◽  
Alireza Abbasi ◽  
Ripon K. Chakrabortty ◽  
Michael J. Ryan

PurposeThis research presents a framework that allows project managers to predict the next critical paths (CP(s)) and to take extra care when planning and executing those activities that have the potential to cause changes in a project's current CP(s).Design/methodology/approachThe method presented here is based on an assessment of each activity's contribution to the overall schedule variance, which involves assigning a probability distribution function to each activity duration in the project. A sensitivity analysis is also carried out, which forms the basis of identifying which activity most affects the project completion date and therefore will have the greatest effect in changing the CP.FindingsThe authors’ analysis reveals that the most appropriate probability density function (PDF) for the targeted project is the normal distribution. However, the aim of this work is not to determine the most suitable distribution for each activity but rather to study the effect of the activity distribution type on the CP prediction. The results show that the selection of the appropriate probability distribution is very important, since it can impact the CP prediction and estimated project completion date.Originality/valueThis research work proposes a delay analysis scheme which can help the project manager to predict the next CP and to improve performance by identifying which activity is the bottleneck. On the other hand, the simplicity arises from the fact that this method does not require any expensive machines or software to generate results.


2007 ◽  
Vol 353-358 ◽  
pp. 2619-2622
Author(s):  
Chao Zhang ◽  
Chun He Yang ◽  
Feng Chen

Since the construction method of tailings dams determines the uneven distribution of tailings, a reliability theory is introduced to analyze the stability of tailings dams. Based on the limit equilibrium method and reliability theory, the sensitivity and reliability of a typical tailings dam are analyzed. Reliability analyses with different types of the variable probability distribution types show that the effect of the probability distribution type on reliability analysis can almost be ignored. Besides, the sensitivity analyses of different variables show that the strength indexes and density of tailings will affect the analysis results of stability reliability. Therefore the strength indexes c, φ and density ρ must be considered as basic variables to analyze the stability reliability of tailings dams.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Juncheng Wang ◽  
Li Zhou ◽  
Wenzhi Song ◽  
Houle Zhang ◽  
Yongxin Wu

This study investigated the effect of different probabilistic distributions (Lognormal, Gamma, and Beta) to characterize the spatial variability of shear modulus on the soil liquefiable response. The parameter sensitivity analysis included the coefficient of variation and scale of fluctuation of soil shear modulus. The results revealed that the distribution type had no significant influence on the liquefication zone. In particular, the estimation with Beta distribution is the worst scenario. It illuminated that the estimation with Beta distribution can provide a conservative design if site investigation is absent.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2600
Author(s):  
Beom-Jin Kim ◽  
Minkyu Kim ◽  
Daegi Hahm ◽  
Junhee Park ◽  
Kun Yeun Han

Abnormal weather conditions due to climate change are currently increasing on both global and local scales. It is therefore important to ensure the safety of the areas where major national facilities are located by analyzing risk quantitatively and re-evaluating the existing major facilities, such as nuclear power plants, considering the load and capacity of extreme flood conditions. In this study, a risk analysis method is developed that combines flood hazard curves with fragility curves using hydraulic and hydrological models by GIS tools and the @RISK model for the probabilistic flood analysis of nuclear power plant sites. A two-dimensional (2D) analysis is first carried out to estimate flood depths in various watershed scenarios, and a representative hazard curve for both external and internal flooding is made by applying a verified probability distribution type for the flood watersheds. For the analysis of flooding within buildings, an internal grid is constructed using GIS with related design drawings, and based on the flood depth results of the 2D analysis, a hazard curve for the representative internal inundation using a verified probability distribution type is presented. In the present study, walkdowns with nuclear experts are conducted around the nuclear power plant area to evaluate the fragile structures and facilities under possible flooding. After reviewing the 2D inundation analysis results based on the selected major equipment and facilities, the zones requiring risk assessment are re-assigned. A fragility curve applying probability distribution for the site’s major equipment and facilities is also presented. Failure risk analysis of the major facilities is then conducted by combining the proposed hazard and fragility curves. Results in the form of quantitative values are obtained, and the indicators for risks as well as the reliability and optimal measures to support decision-making are also presented. Through this study, it is confirmed that risk assessment based on the proposed probabilistic flood analysis technique is possible for flood events occurring at nuclear power plant sites.


Sign in / Sign up

Export Citation Format

Share Document