Effects of Waterlogging at Vegetative and Reproductive Growth Stages on Photosynthesis, Leaf Water Potential and Yield in Mungbean

2002 ◽  
Vol 5 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Selina Ahmed ◽  
Eiji Nawata ◽  
Tetsuo Sakuratani
2020 ◽  
Vol 79 (1) ◽  
pp. 87-94
Author(s):  
Leila Romdhane ◽  
Nicola Dal Ferro ◽  
Amor Slama ◽  
Leila Radhouane

Rising temperatures and increasing water scarcity, which are already important issues, are expected to intensify in the near future due to global warming. Optimizing irrigation in agriculture is a challenge. Understanding the response of crop development stages to water deficit stress provides an opportunity for optimizing irrigation. Here we studied the response of two barley varieties (Rihane, Martin), to water deficit stress at three development stages (tillering, stem elongation, and heading) by measuring water status and grain yield components in a field experiment in Tunisia. The three stages were selected due to their importance in crop growth and grain development. Water deficit stress was initiated by withholding water for 21 days at the three stages with subsequent re-watering. Water deficit led to a progressive decrease in leaf water potential. In both varieties, heading was the stage most sensitive to water deficit. Leaf water potential measurements indicated that water deficit stress was more severe during heading, which to some extent may have influenced the comparison between growth stages. During heading, the number of ears per plant and weight of a thousand grains were reduced by more than 70% and 50%, respectively compared with stress at tillering. Comparison of yield components showed differences between the two barley varieties only when the water deficit was produced during the tillering stage.


1997 ◽  
Vol 122 (3) ◽  
pp. 415-421 ◽  
Author(s):  
Jordi Marsal ◽  
Joan Girona

Relationships between midday (Ψmd) and predawn (Ψpd) leaf water potential, stomatal conductance (gs), and net CO2 assimilation rate (A) were determined at different fruit growth stages and for 2 years with different fruit loads in a `Sudanell' peach [Prunus persica (L) Batsch] plot subjected to two regulated deficit irrigation (RDI) strategies plus a control irrigation treatment. A postharvest RDI (PRDI) treatment was irrigated at 0.35 of the control after harvest. The second treatment (SPRDI) applied RDI during Stage II, the lag phase of the fruit growth curve, at 0.5 of the control and postharvest at 0.35 of the control. The control treatment and the PRDI and SPRDI when not receiving RDI were irrigated at 100% of a modified Penman crop water use calculation (ETo) in 1994, a full crop year, and 80% in 1995, a year of nearly zero crop. In 1995, with 80% of the 1994 irrigation rate and no crop, the Ψmd was higher, probably because of the lower crop load, while Ψpd was lower, probably because less water was applied to the soil. The relationship of gs and A with Ψmd during Stage II was steeper than during postharvest. Low Ψmd was not indicative of a depression in gs and A in Stage III. Osmotic leaf water potential at turgor loss (Ψπ0) as derived from pressure-volume curves was more negative during Stage III and postharvest (about -2.9 MPa) than in Stage II (about -2.7 MPa). The Ψmd measurements together with Ψπ0 determinations seemed to be more useful to characterize peach tree water status than Ψpd under soil water deficits because of their better relationship to midday stomatal closure.


1991 ◽  
Vol 42 (3) ◽  
pp. 471 ◽  
Author(s):  
RJ French ◽  
NC Turner

lrrigation treatments were imposed in the field on an indeterminate cultivar of narrow-leafed lupins (Lupinus angustifolius L., cv. Danja) and on a breeding line with reduced branching (75A/329) so that they experienced no water-deficits (frequently irrigated), a transient mild water-deficit or a transient severe water-deficit during early reproductive growth, or continuous severe water-deficit during reproductive growth (unirrigated). Both leaf water potential and leaf conductance declined in all treatments in which a water-deficit was imposed. Differences in leaf conductance were apparent before differences in leaf water potential: conductance declined to 40% and 30% of the frequently irrigated controls in the transient mild and severe water-deficit treatments, respectively. Leaf water potential declined to -1 - 1 MPa and -1.6 MPa, respectively, in the transient mild and severe water-deficit treatments, compared to between -0 - 65 and -0 - 95 MPa for the frequently irrigated controls. Seed yield and total dry weight were reduced in the transient severe water-deficit and unirrigated treatments, but were no different from the frequently irrigated treatment when the water-deficit was transient and mild. However both transient water-deficit treatments produced more main-stem seed yield than the frequently irrigated treatment, especially in the reduced-branching line 75A/329. The transient mild water-deficit treatment also produced more first-order apical axis yield than the frequently irrigated treatment. These yield increases were mainly due to a greater yield of seed per pod, although on the first-order apical axes there was also a tendency to set more pods. The greater seed yield per pod in the transient water-deficit treatments was due to an apparent redirection of assimilate from vegetative to reproductive growth. This was not due to a smaller reduction in reproductive growth rates than in vegetative growth rates, but to an acceleration of reproductive growth that was maintained after stress relief. The same early acceleration of reproductive growth was also observed in unirrigated treatments, but the severe stress which persisted throughout later reproductive growth reduced pod growth rates and negated the early advantage.


1986 ◽  
Vol 78 (4) ◽  
pp. 749-751 ◽  
Author(s):  
S. K. Hicks ◽  
R. J. Lascano ◽  
C. W. Wendt ◽  
A. B. Onken

Crop Science ◽  
1986 ◽  
Vol 26 (2) ◽  
pp. 380-383 ◽  
Author(s):  
R. C. Johnson ◽  
H. T. Nguyen ◽  
R. W. McNew ◽  
D. M. Ferris

Sign in / Sign up

Export Citation Format

Share Document