scholarly journals Progressive failure analysis of slope with strain-softening behaviour based on strength reduction method

2013 ◽  
Vol 14 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Ke Zhang ◽  
Ping Cao ◽  
Rui Bao
2016 ◽  
Vol 858 ◽  
pp. 73-80
Author(s):  
Ying Kong ◽  
Hua Peng Shi ◽  
Hong Ming Yu

With the slope unstable rock masses of a stope in Longsi mine, Jiaozuo City, China as the target, we computed and analyzed the stability of unstable rock masses using a limit equilibrium method (LEM) and a discrete element strength reduction method (SRM). Results show that the unstable rock masses are currently stable. Under the external actions of natural weathering, rainfall and earthquake, unstable rock mass 1 was manifested as a shear slip failure mode, and its stability was controlled jointly by bedding-plane and posterior-margin steep inclined joints. In comparison, unstable rock mass 2 was manifested as a tensile-crack toppling failure mode, and its stability was controlled by the perforation of posterior-margin joints. From the results of the 2 methods we find the safety factor determined from SRM is larger, but not significantly, than that from LEM, and SRM can simulate the progressive failure process of unstable rock masses. SRM also provides information about forces and deformation (e.g. stress-strain, and displacement) and more efficiently visualizes the parts at the slope that are susceptible to instability, suggesting SRM can be used as a supplementation of LEM.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ruili Lu ◽  
Wei Wei ◽  
Kaiwei Shang ◽  
Xiangyang Jing

In order to study the failure mechanism and assess the stability of the inlet slope of the outlet structure of Lianghekou Hydropower station, the strength reduction method considering the ubiquitous joint model is proposed. Firstly, two-dimension numerical models are built to investigate the influence of the dilation angle of ubiquitous joints, mesh discretization, and solution domain size on the slope stability. It is found that the factor of safety is insensitive to the dilation angle of ubiquitous joints and the solution domain size but sensitive to the mesh discretization when the number of elements less than a certain threshold. Then, a complex three-dimension numerical model is built to assess the stability of the inlet slope of the outlet structure of Lianghekou Hydropower station. During the strength reduction procedure, the progressive failure process and the final failure surface of the slope are obtained. Furthermore, the comparison of factors of safety obtained from strength reduction method and analytical solutions indicates that the effect of vertical side boundaries plays an important role in the stability of jointed rock slope, and the cohesive force is the main contribution to the resistant force of vertical side boundaries.


Sign in / Sign up

Export Citation Format

Share Document