Effects of Acute and Chronic Exposure to a Mixed Field of Neutrons and Photons and Single or Fractionated Simulated Galactic Cosmic Ray Exposure on Behavioral and Cognitive Performance in Mice

2021 ◽  
Vol 196 (1) ◽  
Author(s):  
Sarah Holden ◽  
Ruby Perez ◽  
Reed Hall ◽  
Christina M. Fallgren ◽  
Brian Ponnaiya ◽  
...  
2020 ◽  
Vol 379 ◽  
pp. 112377 ◽  
Author(s):  
Ruby E. Perez ◽  
Skyler Younger ◽  
Elin Bertheau ◽  
Christina M. Fallgren ◽  
Michael M. Weil ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Patrick D. M. C. Katoto ◽  
Amanda S. Brand ◽  
Buket Bakan ◽  
Paul Musa Obadia ◽  
Carsi Kuhangana ◽  
...  

Abstract Background Air pollution is one of the world’s leading mortality risk factors contributing to seven million deaths annually. COVID-19 pandemic has claimed about one million deaths in less than a year. However, it is unclear whether exposure to acute and chronic air pollution influences the COVID-19 epidemiologic curve. Methods We searched for relevant studies listed in six electronic databases between December 2019 and September 2020. We applied no language or publication status limits. Studies presented as original articles, studies that assessed risk, incidence, prevalence, or lethality of COVID-19 in relation with exposure to either short-term or long-term exposure to ambient air pollution were included. All patients regardless of age, sex and location diagnosed as having COVID-19 of any severity were taken into consideration. We synthesised results using harvest plots based on effect direction. Results Included studies were cross-sectional (n = 10), retrospective cohorts (n = 9), ecological (n = 6 of which two were time-series) and hypothesis (n = 1). Of these studies, 52 and 48% assessed the effect of short-term and long-term pollutant exposure, respectively and one evaluated both. Pollutants mostly studied were PM2.5 (64%), NO2 (50%), PM10 (43%) and O3 (29%) for acute effects and PM2.5 (85%), NO2 (39%) and O3 (23%) then PM10 (15%) for chronic effects. Most assessed COVID-19 outcomes were incidence and mortality rate. Acutely, pollutants independently associated with COVID-19 incidence and mortality were first PM2.5 then PM10, NO2 and O3 (only for incident cases). Chronically, similar relationships were found for PM2.5 and NO2. High overall risk of bias judgments (86 and 39% in short-term and long-term exposure studies, respectively) was predominantly due to a failure to adjust aggregated data for important confounders, and to a lesser extent because of a lack of comparative analysis. Conclusion The body of evidence indicates that both acute and chronic exposure to air pollution can affect COVID-19 epidemiology. The evidence is unclear for acute exposure due to a higher level of bias in existing studies as compared to moderate evidence with chronic exposure. Public health interventions that help minimize anthropogenic pollutant source and socio-economic injustice/disparities may reduce the planetary threat posed by both COVID-19 and air pollution pandemics.


2021 ◽  
Vol 502 (4) ◽  
pp. 5821-5838
Author(s):  
Ottavio Fornieri ◽  
Daniele Gaggero ◽  
Silvio Sergio Cerri ◽  
Pedro De La Torre Luque ◽  
Stefano Gabici

ABSTRACT We present a comprehensive study about the phenomenological implications of the theory describing Galactic cosmic ray scattering on to magnetosonic and Alfvénic fluctuations in the GeV−PeV domain. We compute a set of diffusion coefficients from first principles, for different values of the Alfvénic Mach number and other relevant parameters associated with both the Galactic halo and the extended disc, taking into account the different damping mechanisms of turbulent fluctuations acting in these environments. We confirm that the scattering rate associated with Alfvénic turbulence is highly suppressed if the anisotropy of the cascade is taken into account. On the other hand, we highlight that magnetosonic modes play a dominant role in Galactic confinement of cosmic rays up to PeV energies. We implement the diffusion coefficients in the numerical framework of the dragon code, and simulate the equilibrium spectrum of different primary and secondary cosmic ray species. We show that, for reasonable choices of the parameters under consideration, all primary and secondary fluxes at high energy (above a rigidity of $\simeq 200 \, \mathrm{GV}$) are correctly reproduced within our framework, in both normalization and slope.


2021 ◽  
Vol 503 (4) ◽  
pp. 5675-5691
Author(s):  
O Okike ◽  
J A Alhassan ◽  
E U Iyida ◽  
A E Chukwude

ABSTRACT Short-term rapid depressions in Galactic cosmic ray (GCR) flux, historically referred to as Forbush decreases (FDs), have long been recognized as important events in the observation of cosmic ray (CR) activity. Although theories and empirical results on the causes, characteristics, and varieties of FDs have been well established, detection of FDs, from either isolated detectors' or arrays of neutron monitor data, remains a subject of interest. Efforts to create large catalogues of FDs began in the 1990s and have continued to the present. In an attempt to test some of the proposed CR theories, several analyses have been conducted based on the available lists. Nevertheless, the results obtained depend on the FD catalogues used. This suggests a need for an examination of consistency between FD catalogues. This is the aim of the present study. Some existing lists of FDs, as well as FD catalogues developed in the current work, were compared, with an emphasis on the FD catalogues selected by the global survey method (GSM). The Forbush effects and interplanetary disturbances database (FEID), created by the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation Russian Academy of Sciences (IZMIRAN), is the only available comprehensive and up to date FD catalogue. While there are significant disparities between the IZMIRAN FD and other event lists, there is a beautiful agreement between FDs identified in the current work and those in the FEID. This may be a pointer to the efficiency of the GSM and the automated approach to FD event detection presented here.


2012 ◽  
Author(s):  
A. M. Bykov ◽  
D. C. Ellison ◽  
P. E. Gladilin ◽  
S. M. Osipov

1972 ◽  
Vol 36 (3) ◽  
pp. 269-301 ◽  
Author(s):  
J.C Huneke ◽  
F.A Podosek ◽  
D.S Burnett ◽  
G.J Wasserburg

Sign in / Sign up

Export Citation Format

Share Document