Extrapolation Ionization Chamber Dosimetry of Fluorescent X-Ray Energies from 4.5 to 19.6 keV

2016 ◽  
Vol 186 (3) ◽  
pp. 283-291 ◽  
Author(s):  
Joseph T. Rakowski ◽  
Mark A. Tucker ◽  
Michael G. Snyder ◽  
Simon P. Makar ◽  
Mark Yudele ◽  
...  
Keyword(s):  
2011 ◽  
Vol 11 (3) ◽  
pp. 184-188
Author(s):  
Syed F. Akber ◽  
Than S. Kehwar

AbstractThe partial volume (spatial) response of four ionization chambers (Keithley) in kilovoltage X-ray beams, generated by the Philips Super 80CP X-ray unit, was assessed. The volume of the ionization chambers were of 10 cm3, 15 cm3, 150 cm3, and 600 cm3 used with Keithley electrometer Model 35040. The beam output was measured using a monitor chamber (Radcal 6.0 cm3) placed close to the collimator. The source to chamber distance was kept constant at 1 m. For the measurement of the response of ionization chambers of 15 cm3, 150 cm3, and 600 cm3, a slit of 2.0 mm width was made in a lead sheet of 3.2 mm thick and size of 30 × 30 cm2 and was placed on the ionization chamber. The measurements were made for 81 kVp, 400 mA, and 0.25 s and the slit was moved at an increment of 2.0 mm over the entire length of the chamber. For the measurements of the ionization chamber of 10 cm3 (CT chamber), the beams of 120 kVp, 200 mA and 0.2 s were generated, and a slit of 5 mm width was made in a similar lead sheet that was moved at an increment of 5.0 mm. From the result it appears that the sensitive volumes of the ionization chambers affect the response of the ionization chamber to incident radiation.


2006 ◽  
Vol 49 (spe) ◽  
pp. 17-23 ◽  
Author(s):  
Carlos de Austerlitz ◽  
Viviane Souza ◽  
Heldio Pereira Villar ◽  
Aloisio Cordilha

The performance of four X-ray qualities generated in a Pantak X-ray machine operating at 30-100 kV was determined with a parallel-plate ionization chamber and a Fricke dosimeter. X-ray qualities used were those recommended by Deutsch Internationale Normung DIN 6809 and dose measurements were carried out with Plexiglas® simulators. Results have shown that the Fricke dosimeter can be used not only for soft X-ray dosimetry, but also for the maintenance of low-energy measuring systems' calibration factor.


2013 ◽  
Vol 425 (17) ◽  
pp. 172001 ◽  
Author(s):  
T Tanaka ◽  
T Kuwada ◽  
Y Takahashi ◽  
K Hayakawa ◽  
Y Hayakawa ◽  
...  

1959 ◽  
Vol 14 (10) ◽  
pp. 1321-1327 ◽  
Author(s):  
Kenzo Tanaka ◽  
Jun-ichi Chikawa ◽  
Tadashi Yamanaka
Keyword(s):  
X Ray ◽  

Radiology ◽  
1930 ◽  
Vol 15 (1) ◽  
pp. 49-65 ◽  
Author(s):  
Lauriston S. Taylor

2018 ◽  
Vol 63 (2) ◽  
pp. 62-64 ◽  
Author(s):  
А. Белоусов ◽  
A. Belousov ◽  
Г. Крусанов ◽  
G. Krusanov ◽  
А. Черняев ◽  
...  

Purpose: Determining the absorbed dose produced by photons, it is often assumed that it is equal to the radiation kerma. This assumption is valid only in the presence of an electronic equilibrium, which in turn is never ensured in practice. It leads to some uncertainty in determining the absorbed dose in the irradiated sample during radiobiological experiments. Therefore, it is necessary to estimate the uncertainty in determining the relative biological effectiveness of X-rays associated with uncertainty in the determination of the absorbed dose. Material and methods: The monochromatic X-ray photon emission is simulated through a standard 25 cm2 plastic flask containing 5 ml of the model culture medium (biological tissue with elemental composition C5H40O18N). The calculation of the absorbed dose in a culture medium is carried out in two ways: 1) the standard method, according to which the ratio of the absorbed dose in the medium and the ionization chamber is equal to the ratio of kerma in the medium and air; 2) determination of the absorbed dose in the medium and in the sensitive volume of the ionization chamber by computer simulation and calculating the ratio of these doses. For each primary photon energies, 108 histories are modeled, which makes it possible to achieve a statistical uncertainty not worse than 0.1 %. The energy step was 1 keV. The spectral distribution of X-ray energy is modeled separately for each set of anode materials, thickness and materials of the primary and secondary filters. The specification of the X-ray beams modeled in this work corresponds to the standards ISO 4037 and IEC 61267. Within the linear-quadratic model, the uncertainty of determining the RBEmax values is directly proportional to the uncertainty in the determination of the dose absorbed by the sample under study. Results: At energy of more than 60 keV, the ratios for water and biological tissue practically do not differ. At lower energies, up to about 20 keV, the ratio of the coefficients of air and water is slightly less than that of air and biological tissue. The maximum difference is ~ 1 % than usual and the equality of absorbed doses in the ionization chamber and sample is justified. At photon energy of 60 keV for the geometry in question, the uncertainty in determining the dose is about 50 %. For non-monochromatic radiation, the magnitude of the uncertainty is determined by the spectral composition of the radiation, since the curves vary greatly in the energy range 10–100 keV. It is shown that, depending on the spectral composition of X-ray radiation, uncertainty in the determination of the absorbed dose can reach 40–60 %. Such large uncertainty is due to the lack of electronic equilibrium in the radiation geometry used in practice. The spread of RBE values determined from the data of radiobiological experiments carried out by different authors can be determined both by differences in the experimental conditions and by uncertainty in the determination of the absorbed dose. Using Fricke dosimeters instead of ionization chambers in the same geometry allows you to reduce the uncertainty approximately 2 times, up to 10–30 %. Conclusion: The computer simulation of radiobiological experiments to determine the relative biological effectiveness of X-ray radiation is performed. The geometry of the experiments corresponds to the conditions for the use of standard bottles placed in the side holders. It is shown that the ratio of absorbed doses and kerma in the layers of biological tissue and air differ among themselves with an uncertainty up to 60 %. Depending on the quality of the beam, the true absorbed dose may differ from the one calculated on the assumption of kerma and dose equivalence by 50 %. Uncertainty in determining the RBE in these experiments is of the same order. The results are presented for X-ray beams with negligible fraction of photons with energies less than 10 keV. For beams of a different quality, the uncertainty in determination can significantly increase. For the correct evaluation of RBE, it is necessary to develop a uniform standard for carrying out radiobiological experiments. This standard should regulate both the geometry of the experiments and the conduct of dosimetric measurements.


Sign in / Sign up

Export Citation Format

Share Document