scholarly journals Comparative activity of pulsed or continuous estradiol exposure on gene expression and proliferation of normal and tumoral human breast cells

2002 ◽  
Vol 28 (3) ◽  
pp. 165-175 ◽  
Author(s):  
V Cavailles ◽  
A Gompel ◽  
MC Portois ◽  
S Thenot ◽  
N Mabon ◽  
...  

Intranasal administration of hormone replacement therapy presents an original plasma kinetic profile with transient estrogen levels giving rise to the concept of pulsed therapy. To further understand the molecular effects of this new therapy, we have compared the effects of pulsed and continuous estradiol treatments on two critical aspects of estradiol action: gene expression and cell proliferation. Cells were stimulated with estradiol as 1-h pulsed or 24-h continuous treatments at concentrations such that the 24-h exposure (concentration x time) was identical in both conditions. In MCF7 cells, the transcriptional activity of estrogen receptors (ER) on a transiently transfected responsive estrogen response element-luciferase reporter construct was shown to be drastically (approximately 10-fold) and similarly stimulated after both treatments. Moreover, the increased mRNA expression of three representative estradiol-sensitive genes (pS2, cathepsin D, progesterone receptor), evaluated by Northern blot, was identical after 1-h pulse with 7 nM estradiol or continuous treatment with 0.29 nM estradiol with the same kinetic profile over 48 h. Proliferation was quantified by a histomorphometric method on primary cultures of human normal breast cells from reduction mammoplasties and using a fluorescence DNA assay in six human breast cancer cell lines which were ER positive or negative. After a 7-day treatment period, estradiol had no effect on the proliferation of the three ER negative cell lines (BT20, MDA MB231, SK BR3) but significantly stimulated the proliferation of the normal cells and of the three tumoral hormone-sensitive cell lines (MCF7, T47D, ZR 75-1); both hormone treatments producing the same increases in cell growth. In conclusion, we have shown that the genomic or proliferative effects of estradiol were identical with pulsed or continuous treatments, thus indicating that estrogenic effects are not strictly related to concentrations but rather to total hormone exposure.

2018 ◽  
Vol 48 (1) ◽  
pp. 194-207 ◽  
Author(s):  
Juan Gu ◽  
Yueping Wang ◽  
Xuedong Wang ◽  
Daoping Zhou ◽  
Xinguo Wang ◽  
...  

Background/Aims: An increasing body of evidence shows that long noncoding RNAs (lncRNAs) are involved in many different cancers. In this study, we aimed to investigate the competing endogenous RNA (ceRNA)-dependent mechanism by which the lncRNA GAS5 contributes to the development of breast cancer. Methods: A total of 68 breast cancer patients were enrolled, and breast cancer and adjacent normal tissues were collected. The human breast cancer cell lines MDA-MB-231, MDA-MB-453, BT549, SK-BR-3 and MCF-7 and human breast cell line MCF10A were utilized in this study. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting were performed to detect expression of relative factors. RNA immunoprecipitation (RIP) was used to evaluate the relationship between GAS5 and miR-23a, and a dual luciferase reporter gene assay was employed to assess the relationship between ATG3 and miR-23a. A subcutaneous xenograft nude mouse model was generated to examine the role of GAS5 and its regulatory pathway in autophagy. Results: GAS5 levels were frequently decreased in breast cancer tissues and cell lines, and its relatively low expression was closely related to a larger tumour size, advanced tumour-node-metastasis (TNM) stage and estrogen receptor-negative (ER-) breast cancer tissues. More importantly, we found that GAS5 promoted autophagy, with enhanced autophagosome formation after GAS5 overexpression. GAS5 was found to act as a microRNA sponge in a pathway that included miR-23a and its target gene ATG3. The GAS5-miR-23a-ATG3 axis significantly regulated autophagy in vivo and in vitro. Conclusions: In summary, we report that the GAS5-miR-23a-ATG3 axis can be regarded as a key regulator of autophagy pathways in breast cancer; it may constitute a promising biomarker and therapeutic target in the future.


Maturitas ◽  
2014 ◽  
Vol 77 (4) ◽  
pp. 336-343 ◽  
Author(s):  
Magnus Diller ◽  
Susanne Schüler ◽  
Stefan Buchholz ◽  
Claus Lattrich ◽  
Oliver Treeck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document