scholarly journals Interleukin-1β modulates endogenous thyroid hormone receptor α gene transcription in liver cells

2007 ◽  
Vol 194 (2) ◽  
pp. 257-265 ◽  
Author(s):  
J Kwakkel ◽  
W M Wiersinga ◽  
A Boelen

One of the main characteristics of nonthyroidal illness (NTI) is a decrease in serum triiodothyronine, partly caused by a decrease in liver deiodinase type 1 (D1) mRNA and activity. Proinflammatory cytokines have been associated with NTI in view of their capability to decrease D1 and thyroid hormone receptor (TR)β1 mRNA expression in hepatoma cells. Proinflammatory cytokine induction leads to activation of the inflammatory pathways nuclear factor (NF)κB and activator protein (AP)-1. The proinflammatory cytokine interleukin (IL)-1β decreases thyroid hormone receptor (TR)β1 mRNA in an NFκB-dependent way. The aim of this study was to unravel the effects of IL-1β on endogenous TRα gene expression in an animal model and in a liver cell line. The TRα gene product is alternatively spliced in TRα1 and TRα2, TRα2 is capable of inhibiting TRα1-induced gene transcription. We showed that both TRα1 and TRα2 mRNA decreased not only after lipopolysaccharide administration in liver of mice, but also after IL-1β stimulation of hepatoma cells (HepG2). Using the NFκB inhibitor sulfasalazine and the AP-1 inhibitor SP600125, it became clear that the IL-1β-induced decrease in TRα mRNA expression in HepG2 cells can only be abolished by simultaneous inhibition of NFκB and AP-1. The IL-1β-induced TRα1 and TRα2 mRNA decrease in HepG2 cells is the result of decreased TRα gene promoter activity, as evident from actinomycin D experiments. Cycloheximide experiments showed that the decreased promoter activity is independent of de novo protein synthesis and therefore most likely due to posttranslational modifications such as phosphorylation or subcellular relocalization.

2008 ◽  
Vol 41 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Anne Wulf ◽  
Marianne G Wetzel ◽  
Maxim Kebenko ◽  
Meike Kröger ◽  
Angelika Harneit ◽  
...  

Thyroid hormone 3,3′,5-tri-iodothyronine (T3) regulates gene expression in a positive and negative manner. Here, we analyzed the regulation of a positively (mitochondrial glycerol-3-phosphate dehydrogenase) and negatively T3-regulated target gene (TSHα). Thyroid hormone receptor (TR) activates mGPDH but not TSH promoter fragments in a mammalian one-hybrid assay. Furthermore, we investigated functional consequences of targeting TR to DNA independent of its own DNA-binding domain (DBD). Using a chimeric fusion protein of the DBD of yeast transcription factor Gal4 with TR, we demonstrated a positive regulation of gene transcription in response to T3. T3-mediated activation of this chimeric protein is further increased after an introduction of point mutations within the DBD of TR. Moreover, we investigated the capacity of TR to negatively regulate gene transcription on a DNA-tethered cofactor platform. A direct binding of TR to DNA via its own DBD is dispensable in this assay. We investigated functional consequences of point mutations affecting different domains of TR. Our data indicate that the DBD of TR plays a key role in direct DNA binding on positively but not on negatively T3-regulated target genes. Nevertheless, the DBD is involved in mediating negative gene regulation independent of its capacity to bind DNA.


Oncogene ◽  
2013 ◽  
Vol 32 (38) ◽  
pp. 4509-4518 ◽  
Author(s):  
Y-H Lin ◽  
C-J Liao ◽  
Y-H Huang ◽  
M-H Wu ◽  
H-C Chi ◽  
...  

1996 ◽  
Vol 318 (1) ◽  
pp. 263-270 ◽  
Author(s):  
René W. L. M. NIESSEN ◽  
Farhad REZAEE ◽  
Pieter H. REITSMA ◽  
Marjolein PETERS ◽  
Jan J. M. de VIJLDER ◽  
...  

We studied potential modulators of antithrombin gene expression. A putative hormone response element (HRE) was identified by sequence similarity analysis of the antithrombin promoter, situated between nucleotides -92 and -54 relative to the transcription start site. This HRE contains three hexanucleotide motifs with an AGGTCA consensus, which are potential targets of members of the steroid/thyroid superfamily of nuclear receptors. Stimulation of the hepatoma cell line HepG2 with the receptor ligands l-3,5,3´-tri-iodothyronine, all-trans retinoic acid, or their combination, increased production of antithrombin into the culture medium by 1.3-, 1.6-, and 2.0-fold, respectively. In contrast, the receptor ligand 1,25-dihydroxycholecalciferol [1,25-(OH)2VitD3] did not influence antithrombin production. Analysis of promoter chloramphenicol acetyltransferase (CAT) constructs, showed that the first 86 bp of the antithrombin promoter region are sufficient for basal transcription. The DNA length polymorphism of 32 bp or 108 bp, located upstream of position -276, did not influence antithrombin promoter activity. The antithrombin promoter activity dropped to background values when deleting the region -97/-49 of promoter fragment -453/+57. Transactivation of the antithrombin promoter by retinoid X receptor α (RXRα) (5–7-fold) or thyroid hormone receptor β (TRβ) (4–5-fold) was only observed when at least -167/+57 bp of the promoter region is present in CAT constructs, and when the appropriate ligand of the nuclear receptor was added. This transactivation was not observed upon deletion of the antithrombin promoter region -97/-49. With three copies of the antithrombin promoter fragment -109/-42 in front of the thymidine kinase minimal promoter, transactivation was only obtained with RXRα, and not with TRβ. In conclusion, these results indicate that the ligand-dependent enhancement of antithrombin gene expression is regulated by RXRα as well as by TRβ. Transactivation of antithrombin gene expression by RXRα and TRβ appears to be dependent upon the presence of promoter region up to nucleotide -167. The HRE segment (-109/-42) only confers RXRα responsiveness to a heterologous promoter. Further study is needed to unravel the exact nature of this HRE and its 5´-flanking sequences.


1999 ◽  
Vol 46 (6) ◽  
pp. 825-829 ◽  
Author(s):  
SASITORN DITUDOMPO ◽  
BOONSONG ONGPHIPHADHANAKUL ◽  
SUWANNEE CHANPRASERTYOTIN ◽  
RAJATA RAJATANAVIN

2013 ◽  
Vol 216 (24) ◽  
pp. 4647-4654 ◽  
Author(s):  
B. Martinez ◽  
J. G. Sonanez-Organis ◽  
J. P. Vazquez-Medina ◽  
J. A. Viscarra ◽  
D. S. MacKenzie ◽  
...  

Cell ◽  
1989 ◽  
Vol 59 (4) ◽  
pp. 697-708 ◽  
Author(s):  
Christopher K. Glass ◽  
Steven M. Lipkin ◽  
Orly V. Devary ◽  
Michael G. Rosenfeld

Author(s):  
A Chatzitomaris ◽  
R Köditz ◽  
W Höppner ◽  
S Peters ◽  
HH Klein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document