PROLACTIN RECEPTORS IN THE MAMMARY GLAND, CORPUS LUTEUM AND OTHER TISSUES OF THE TAMMAR WALLABY, MACROPUS EUGENII

1979 ◽  
Vol 83 (1) ◽  
pp. 79-89 ◽  
Author(s):  
C. SERNIA ◽  
C. H. TYNDALE-BISCOE

SUMMARY Specific binding of radio-iodinated ovine prolactin to subcellular tissue fractions of the tammar wallaby (Macropus eugenii) was investigated. Specific binding was found, in order of decreasing binding activity, in the lactating mammary gland, corpus luteum, corpus albicans, adrenal gland and ovary. Specific binding was absent in kidney, liver, brain and inactive mammary gland. The mean association constant (Ka at 23 °C) was determined as 0·90 × 109, 2·20 × 109, 2·44 × 109, 3·38 × 109 and 10·98 × 1091/mol for mammary gland, adrenal, corpus albicans, corpus luteum and ovary respectively. The mean receptor concentration (N) varied from 92·87 × 10−14 mol/mg protein for the mammary gland to 1·03 × 10−14 mol/mg protein for the ovary. The concentration in the corpus luteum varied between tissue pools collected at different times of the annual breeding cycle. The specificity for prolactin was shown in the mammary gland and corpus luteum by the failure of ovine FSH, LH, GH and TSH to displace 125I-labelled ovine prolactin, whereas it was displaced readily by both ovine and bovine prolactin.

Reproduction ◽  
1979 ◽  
Vol 57 (1) ◽  
pp. 131-136 ◽  
Author(s):  
M. B. Renfree ◽  
S. W. Green ◽  
I. R. Young

Development ◽  
1981 ◽  
Vol 62 (1) ◽  
pp. 325-338
Author(s):  
Elizabeth J. Thornber ◽  
Marilyn B. Renfree ◽  
Gregory I. Wallace

The in vitro uptake and incorporation of [3H]ui idine by blastocysts of the tammar wallaby showed a 16- and 30-fold increase from day 0 to day 10 after removal of pouch young, respectively. Two of the six non-expanded blastocysts recovered on day 5 showed a tenfold increase in incorporation. During the first ten days after removal of pouch young the diameter of the blastocyst increased threefold. Endometrial exudate from gravid uteri had a higher protein concentration than exudate from nongravid uteri (39·5 ± 0·9 and 32·0 ± 2·0 mg/ml (mean ± s.e.m.), respectively). Endometrial exudates from uteri where the blastocyst was actively growing were found to contain six uterine-specific proteins. These were separated by gradient polyacrylamide gel electrophoresis. Two of the proteins were pre-albumins and the others were larger molecules (M.W. 153000–670000). Two proteins were only present at particular stages of pregnancy: the other four were present at all stages from diapause to birth, in exudate from gravid and nongravid uteri. The specific binding of progesterone and androstenedione to proteins in endometrial exudates or uterine flushings from pregnant wallabies was less than one per cent of the value obtained from day-5 pregnant rabbits. The ability of mouse blastocysts to take up and incorporate [3H]uridine into acidinsoluble material increased threefold in the presence of day-10 endometrial exudates from wallabies. However, this was less than ten percent of the values obtained in the presence of bovine serum albumin. The concentration of calcium in endometrial exudates increased from 23·6 to 45·2 μg/ml during pregnancy; in endometrium it remained at 88·7 μg/g (wet weight) throughout pregnancy, and in plasma it was 53·3 μg/ml. The concentration of zinc in endometrial exudates was 4·5 μg/ml; in endometrium it decreased from 21·8 to 13·3 μg/g (wet weight) during pregnancy and in plasma it was 0·6 μg/ml.


1987 ◽  
Vol 114 (3) ◽  
pp. 383-389 ◽  
Author(s):  
T. A. Bramley ◽  
G. S. Menzies ◽  
A. S. McNeilly ◽  
H. G. Friesen

ABSTRACT Ovine luteal cytosol fractions inhibited the specific binding of 125I-labelled human GH and ovine prolactin (oPRL) to ovine luteal microsomes in a dose-dependent fashion. Inhibition was dependent on divalent cation concentrations, and was abolished by divalent metal ion chelating agents or by boiling. Inhibition was not due to ionic strength or salt effects on hormone binding, the release of endogenously bound oPRL into the cytosol fraction during tissue disruption and fractionation, or the presence of a soluble (or solubilized) lactogenic receptor in ovine cytosol preparations. Gel chromatography of cytosol fractions gave a molecular weight for the inhibitor of approximately 50 000. J. Endocr. (1987) 114, 383–389


1987 ◽  
Vol 241 (3) ◽  
pp. 899-904 ◽  
Author(s):  
K R Nicholas ◽  
M Messer ◽  
C Elliott ◽  
F Maher ◽  
D C Shaw

A major whey protein which appears in milk from the tammar wallaby (Macropus eugenii) only during the second half of lactation (late lactation protein-A, LLP-A) was purified to apparent homogeneity by ion-exchange chromatography and gel filtration. An Mr of 21,600 +/- 2000 was calculated from its amino acid composition. A computer-based comparison of the sequence of the first 69 amino acid residues with the Atlas of Protein Sequence data base showed no significant homology with known proteins. Antiserum to LLP-A was prepared in rabbits, and single radial immunodiffusion was used to measure the amounts of LLP-A in milk during the first 40 weeks of lactation. LLP-A was first detected at 26 weeks; thereafter its concentration increased abruptly, to reach a maximum of 26 g/l at approx. 36 weeks of lactation. Explants prepared from mammary gland biopsies at 20 and 35 weeks of lactation were exposed to [3H]amino acids for 8 h; immunoprecipitation of tissue extracts showed that, whereas the rate of casein synthesis was the same at both stages of lactation, LLP-A was synthesized only by the 35-week mammary gland.


2013 ◽  
Vol 25 (2) ◽  
pp. 456 ◽  
Author(s):  
L. A. Hinds ◽  
C. H. Tyndale-Biscoe

The corpus luteum (CL) of the tammar wallaby is inhibited by prolactin during lactation and seasonal quiescence. In seasonal quiescence a daily transient pulse of prolactin (PRL) of less than 2 h duration is sufficient to maintain inhibition. We investigated whether the same inhibition applies in lactation and, if so, how. Our results show that inhibition of the CL during lactation is maintained by a transient pulse of prolactin once a day. They also show that the minimum time without a PRL pulse for the CL to escape inhibition is more than 48 h and less than 72 h. Nevertheless, some animals had a longer refractory period than 72 h, which was reflected in a longer interval to the progesterone peak and birth. These results support the previous conclusion that PRL exercises its effect on a rate-limiting step in progesterone synthesis and secretion rate from the CL, which precedes any increase in its mass. Therefore, we conclude that the role of PRL is to act as a luteostatic agent, an effect that is in marked contrast to its luteotrophic effect in many eutherian species, including rodents.


1990 ◽  
Vol 2 (6) ◽  
pp. 693 ◽  
Author(s):  
C Collet ◽  
R Joseph ◽  
K Nicholas

The gene for alpha-lactalbumin has been cloned from a tammar wallaby (Macropus eugenii) mammary gland cDNA library. Tammar alpha-lactalbumin has approximately 50 and 30% homology to the alpha-lactalbumins of eutherians at the levels of nucleotide and protein sequence respectively. Comparison of the inferred tammar polypeptide sequence with the sequence of the eutherian proteins reveals extensive divergence at almost all of the non-essential amino acid residues. However, the hydropathy plots of the tammar protein are almost identical to those of eutherian alpha-lactalbumins, suggesting that protein conformation is conserved. The tammar gene encodes a transcript of approximately 975 bases. Northern blot analysis of hormone-stimulated mammary gland explants shows that maximal induction of alpha-lactalbumin mRNA is dependent on prolactin and that expression is not modulated by other hormones that play a role in the initiation of lactation in eutherians.


Sign in / Sign up

Export Citation Format

Share Document