Oxytocin may play a role in the control of the human corpus luteum

1982 ◽  
Vol 95 (1) ◽  
pp. 65-70 ◽  
Author(s):  
G. J. S. Tan ◽  
R. Tweedale ◽  
J. S. G. Biggs

The effects of oxytocin on dispersed luteal cells from human corpora lutea of the menstrual cycle were studied. Oxytocin at a concentration of 4 mi.u./ml produced a slight increase in basal progesterone production. However, higher oxytocin concentrations (400 and 800 mi.u./ml) markedly inhibited both basal and human chorionic gonadotrophin-induced progesterone production. These data provide evidence for an effect of oxytocin on the human corpus luteum. In view of the inhibitory action of oxytocin, increased secretion of this hormone may be important in the demise of the corpus luteum at the end of the menstrual cycle.

1983 ◽  
Vol 96 (3) ◽  
pp. 499-503 ◽  
Author(s):  
G. J. S. Tan ◽  
J. S. G. Biggs

The effects of prolactin on steroidogenesis were studied in dispersed luteal cells prepared from human corpora lutea of the menstrual cycle. Prolactin, at concentrations of 0·1–1000 ng/ml, had no effect on progesterone production by luteal cells during short-term incubation (3 h). However, in two out of five corpora lutea, higher concentrations of prolactin (100 and 1000 ng/ml) significantly reduced the oestradiol-17β production induced by human chorionic gonadotrophin (hCG; 10 i.u./ml); lower doses of prolactin had little effect. In the remaining corpora lutea, prolactin failed to affect either basal or hCG-induced production of oestradiol-17β. These results are discussed in relation to the mechanism by which prolactin influences human ovarian function.


1985 ◽  
Vol 104 (1) ◽  
pp. 149-151 ◽  
Author(s):  
M. C. Richardson ◽  
G. M. Masson

ABSTRACT Suspensions of luteal cells were prepared from samples of human corpora lutea obtained during the luteal phase of menstrual cycles. Addition of oxytocin (1 μmol/l) to the various cell preparations had no effect on either basal production of progesterone or on steroidogenic responses to a range of concentrations of gonadotrophin. J. Endocr. (1985) 104, 149–151


1984 ◽  
Vol 101 (3) ◽  
pp. 327-332 ◽  
Author(s):  
M. C. Richardson ◽  
G. M. Masson ◽  
M. R. Sairam

ABSTRACT The biological activity of deglycosylated human chorionic gonadotrophin (hCG) prepared by treatment of the native hormone with anhydrous hydrogen fluoride was evaluated using suspensions of dispersed cells from biopsies of human corpus luteum obtained during the luteal phase of normal menstrual cycles. A reproducible pattern of response to hCG in terms of progesterone production by luteal cells was established for a range of luteal ages. Deglycosylation of hCG led to a diminished level of maximum response to the hormone. Co-incubation of luteal cells with a level of hCG just sufficient to elicit a maximum response and increasing concentrations of deglycosylated hCG led to a progressive inhibition of the hormonal response; at a concentration of 103 ng deglycosylated hCG/ml (a tenfold excess of deglycosylated hCG over the native hormone), hCG-induced progesterone production was reduced by about 50%. Deglycosylated hCG therefore acts as a partial antagonist for the action of hCG on human luteal cells. J. Endocr. (1984) 101, 327–332


1984 ◽  
Vol 103 (1) ◽  
pp. 107-110 ◽  
Author(s):  
M. G. Hunter

ABSTRACT Human luteal tissue recovered from varying stages of the luteal phase was minced and incubated for 3 h and the effect of human chorionic gonadotrophin (hCG), prolactin and hCG + prolactin on progesterone and oestradiol production measured. While hCG generally enhanced both progesterone and oestradiol synthesis, prolactin alone at either 20 or 200 μg/l had no significant effect on steroidogenesis. When prolactin was added along with hCG in four of six corpora lutea, however, progesterone production significantly increased and in three of six corpora lutea oestradiol production was increased above that induced by hCG alone. It is concluded that prolactin may play some role in the control of steroidogenesis by the human corpus luteum. J. Endocr. (1984) 103, 107–110


1992 ◽  
Vol 4 (1) ◽  
pp. 67 ◽  
Author(s):  
HZ Wang ◽  
SH Lu ◽  
XJ Han ◽  
ZD Sun ◽  
WX Shen ◽  
...  

The production of inhibin in vitro by dispersed cells from early to mid (Days 16-19) and late stage (Day 23) human corpus luteum (CL) was examined, and the effects of human chorionic gonadotrophin (hCG), follicle stimulating hormone (FSH), oestradiol and testosterone on inhibin production were determined. Corpora lutea from five subjects in the early to mid luteal stage and three subjects in late luteal stage were dispersed with enzymes and the luteal cells cultured in medium supplemented with 5% calf serum and either FSH (1, 10 or 100 ng mL-1), oestradiol-17 beta (2.5, 5 or 10 micrograms mL-1) or testosterone (0.25, 1 or 5 micrograms mL-1) with or without hCG (1 I.U. mL-1). Cells were cultured for 1 to 3 days without changes of medium, and the concentrations of progesterone, oestradiol and immunoreactive inhibin in the medium were measured by radioimmunoassay. Cells from both types of CL produced inhibin in vitro under basal conditions, but only cells from early to mid CLs responded to hCG with a significant increase in inhibin production. Both progesterone and oestradiol production were stimulated by hCG in both groups of CL. Inhibin concentrations in the cell cultures declined with time in culture, particularly in the late CL group, whereas the concentration of steroids increased. Neither FSH, oestradiol nor testosterone significantly changed inhibin production in either CL group. It was concluded that inhibin production by human luteal cells in vitro is influenced by the age of the CL, and is dependent on LH (hCG) but not on FSH or sex steroids.


1981 ◽  
Vol 91 (2) ◽  
pp. 197-203 ◽  
Author(s):  
M. C. RICHARDSON ◽  
G. M. MASSON

Cell suspensions were prepared from tissue samples of human corpora lutea obtained during the mid- and late-luteal phase of the menstrual cycle. Both oestradiol and progesterone production by dispersed cells were stimulated by similar concentrations of human chorionic gonadotrophin (hCG). As the degree of stimulation of production by hCG was greater for progesterone than for oestradiol (five- to tenfold compared with two- to threefold higher than basal production), the ratio of progesterone to oestradiol produced varied according to the level of trophic stimulation. A comparison of cell suspensions prepared from mid- and late-luteal phase corpora lutea, exposed to the same concentration of hCG (10 i.u./ml) in vitro, did not reveal a shift to oestradiol production in the late-luteal phase. Provision of additional testosterone during incubation raised the level of oestradiol production by dispersed luteal cells. At an optimum concentration of testosterone (1 μmol/l), oestradiol synthesis was not raised further in the presence of hCG or N6, O2-dibutyryl cyclic AMP, suggesting a lack of induction or activation of the aromatase system by gonadotrophin in short-term cultures. Basal and stimulated levels of progesterone production were not significantly impaired in the presence of testosterone.


Reproduction ◽  
2008 ◽  
Vol 136 (3) ◽  
pp. 367-375 ◽  
Author(s):  
Yumi Takao ◽  
Hiroshi Fujiwara ◽  
Shinya Yoshioka ◽  
Shingo Fujii ◽  
Masamichi Ueda

To investigate the physiological characteristics of the corpus luteum (CL) of pregnancy, we raised a mAb, human corpus luteum (HCL)-4, against human luteal cells obtained from CL of pregnancy. The affinity-purified antigen from human CL of pregnancy or placenta using HCL-4 was a 61 kDa protein. The partial amino acid sequence of the antigenic protein was identical to that of human monoamine oxidase A (MAOA, EC1.4.3.4). MAOA has been shown to catabolize catecholamines that were reported to regulate luteal function in CL and vasoconstriction in various organs. Immunohistochemistry using HCL-4 mAb showed that MAOA was intensely expressed on large luteal cells and moderately expressed on small luteal cells in the CL of pregnancy. In the CL of menstrual cycle, MAOA was weakly detected on large luteal cells but not detected at all on small luteal cells. Western blotting analysis confirmed the high expression of MAOA in CL of pregnancy. Northern blot analysis also showed the expression ofMAOAmRNA in human CL, and showed that its expression was higher in CL of pregnancy than in CL of menstrual cycle. The increased expression of MAOA in the CL of pregnancy suggests the contribution of MAOA to the function of the CL of pregnancy.


1987 ◽  
Vol 67 (1) ◽  
pp. 21-26 ◽  
Author(s):  
PIERRE MATTON ◽  
VICTOR ADELAKOUN ◽  
JACQUES DUFOUR

Previous results have shown that progesterone levels were higher on the day of parturition in cows with retained fetal membranes (RFM) than in cows with normal calving, suggesting incomplete lysis of the corpus luteum (CL). This experiment was performed to evaluate the activity of the CL and the level of 13,14-dihydro-15-keto prostaglandin F2α (PGFM) in RFM cows. Cows with RFM or those calving normally (NC) were ovariectomized 12–14 h after parturition. Blood samples were taken from the caudal and utero-ovarian veins. Slices of CL were incubated with or without human chorionic gonadotrophin (hCG) medium for 3 h. Plasma progesterone was higher in both the caudal and utero-ovarian veins of RFM cows than in those of NC cows (1.12 ± 0.25 vs. 0.62 ± 0.08 ng mL−1 and 2.4 ± 0.3 vs. 1.44 ± 0.33 ng mL−1, respectively). PGFM was also significantly higher in RFM cows (3.62 ± 0.19 vs. 2.55 ± 0.15 ng mL−1). Progesterone production by CL slices from both types of cows, incubated without hCG, was similar (65 ± 4.2 vs. 73 ± 5.1 μg g−1); with hCG, however, the progesterone production by the CL of RFM cows was 186.3 ± 10.7 μg g−1, 75.7 μg g−1 more than in CL of cows with normal calving. These results support the hypothesis of an incomplete luteolysis of the CL in RFM cows in spite of hieher levels of PGF2α. Key words: Corpus luteum activity, progesterone, prostaglandin, postpartum cows, retained placenta


1977 ◽  
Vol 73 (1) ◽  
pp. 115-122 ◽  
Author(s):  
I. A. SWANSTON ◽  
K. P. McNATTY ◽  
D. T. BAIRD

SUMMARY The concentration of prostaglandin F2α (PGF2α), progesterone, pregnenolone, oestradiol-17β, oestrone, androstenedione and testosterone was measured in corpora lutea obtained from 40 women at various stages of the menstrual cycle. The concentration of PGF2α was significantly higher in corpora lutea immediately after ovulation (26·7 ± 3·9 (s.e.m.) ng/g, P < 0·005) and in corpora albicantia (16·3 ± 3·3 ng/g, P < 0·005) than at any other time during the luteal phase. There was no correlation between the concentration of PGF2α and that of any steroid. The progesterone concentration was highest in corpora lutea just after ovulation (24·9 ± 6·7 μg/g) and in early luteal groups (25·7 ± 6·8 μg/g) but declined significantly (P < 0·05) to its lowest level in corpora albicantia (1·82 ± 0·66 μg/g). The concentration of oestradiol-17β in the corpus luteum and luteal weight were significantly greater during the mid-luteal phase than at any other stage (concentration 282 ± 43 ng/g, P < 0·05; weight 1·86 ± 0·18 g, P < 0·005). The results indicate that regression of the human corpus luteum is not caused by a rise in the ovarian concentration of PGF2α in the late luteal phase of the cycle.


Sign in / Sign up

Export Citation Format

Share Document