CONCENTRATION OF PROSTAGLANDIN F2α AND STEROIDS IN THE HUMAN CORPUS LUTEUM

1977 ◽  
Vol 73 (1) ◽  
pp. 115-122 ◽  
Author(s):  
I. A. SWANSTON ◽  
K. P. McNATTY ◽  
D. T. BAIRD

SUMMARY The concentration of prostaglandin F2α (PGF2α), progesterone, pregnenolone, oestradiol-17β, oestrone, androstenedione and testosterone was measured in corpora lutea obtained from 40 women at various stages of the menstrual cycle. The concentration of PGF2α was significantly higher in corpora lutea immediately after ovulation (26·7 ± 3·9 (s.e.m.) ng/g, P < 0·005) and in corpora albicantia (16·3 ± 3·3 ng/g, P < 0·005) than at any other time during the luteal phase. There was no correlation between the concentration of PGF2α and that of any steroid. The progesterone concentration was highest in corpora lutea just after ovulation (24·9 ± 6·7 μg/g) and in early luteal groups (25·7 ± 6·8 μg/g) but declined significantly (P < 0·05) to its lowest level in corpora albicantia (1·82 ± 0·66 μg/g). The concentration of oestradiol-17β in the corpus luteum and luteal weight were significantly greater during the mid-luteal phase than at any other stage (concentration 282 ± 43 ng/g, P < 0·05; weight 1·86 ± 0·18 g, P < 0·005). The results indicate that regression of the human corpus luteum is not caused by a rise in the ovarian concentration of PGF2α in the late luteal phase of the cycle.

1980 ◽  
Vol 87 (2) ◽  
pp. 247-254 ◽  
Author(s):  
M. C. RICHARDSON ◽  
G. M. MASSON

Progesterone production was assessed following short-term incubations of luteal cell suspensions prepared from tissue samples of human corpora lutea obtained at specific times throughout the luteal phase of the menstrual cycle. Luteal cells responded rapidly and sensitively to human chorionic gonadotrophin (HCG; concentration required for 50% maximum response, 0·1–1·0 i.u./ml) with a maximum level of response (five- to tenfold higher than basal production) similar to that elicited by human LH or N6,02-dibutyryl cyclic AMP. In the absence of gonadotrophin or in the presence of sub-maximal (but not maximal) concentrations of HCG, progesterone production by mid-luteal phase cells was stimulated by prostaglandin F2α (1 μmol/l), an effect not observed during the late-luteal phase. l-Adrenaline and l-isoprenaline failed to elicit significant increases in the level of progesterone production.


Endocrinology ◽  
2000 ◽  
Vol 141 (5) ◽  
pp. 1711-1717 ◽  
Author(s):  
Diane M. Duffy ◽  
Charles L. Chaffin ◽  
Richard L. Stouffer

Abstract There are conflicting reports on the presence or absence of estrogen receptor (ER) in the primate corpus luteum, and the discovery of a second type of estrogen receptor, ERβ, adds an additional level of complexity. To reevaluate ER expression in the primate luteal tissue, we used semiquantitative RT-PCR based assays and Western blotting to assess ERα and β messenger RNA (mRNA) and protein levels in corpora lutea (n = 3/stage) obtained from adult female rhesus monkeys at early (days 3–5), mid (days 6–8), mid-late (days 10–12), and late (days 14–16) luteal phase of the natural menstrual cycle. ERα mRNA levels did not vary across the stages of the luteal phase, and ERα protein was not consistently detected in luteal tissues. However, ERβ mRNA and protein levels were detectable in early and mid luteal phases and increased (P &lt; 0.05) to peak levels at mid-late luteal phase before declining by late luteal phase. To determine if ERβ mRNA expression in the corpus luteum is regulated by LH, monkeys received the GnRH antagonist antide either alone or with 3 daily injections of LH to simulate pulsatile LH release. Treatment with antide alone or concomitant LH administration did not alter luteal ERβ mRNA levels. When monkeys also received the 3β-hydroxysteroid dehydrogenase inhibitor trilostane to reduce luteal progesterone production, luteal ERβ mRNA levels were 3-fold higher (P &lt; 0.05) than in monkeys receiving antide + LH only. Replacement of progestin activity with R5020 reduced luteal ERβ mRNA levels to those seen in animals receiving antide + LH. Thus, there is dynamic ERβ expression in the primate corpus luteum during the menstrual cycle, consistent with a role for estrogen in the regulation of primate luteal function and life span via a receptor (ERβ)-mediated pathway. Increased ERβ expression in the progestin-depleted corpus luteum during LH exposure suggests that the relative progestin deprivation experienced by the corpus luteum between LH pulses may enhance luteal sensitivity to estrogens during the late luteal phase of the menstrual cycle.


1992 ◽  
Vol 133 (3) ◽  
pp. 451-458 ◽  
Author(s):  
T. Endo ◽  
H. Watanabe ◽  
H. Yamamoto ◽  
S. Tanaka ◽  
M. Hashimoto

ABSTRACT While prostaglandin F2α (PGF2α) has been thought to be a natural luteolysin in non-primates, a luteolytic effect in the human corpus luteum is less evident. We therefore investigated the action of PGF2α on monolayer cultures of human luteal cells obtained from mid-luteal phase corpora lutea. PGF2α increased basal and human chorionic gonadotrophin (hCG)-stimulated progesterone production by human cultured luteal cells. A potent tumour-promoting phorbol ester, phorbol 12-myristate-13-acetate (PMA), also stimulated progesterone production by cultured human luteal cells. Although human luteal cells were incubated for 24 h with PMA, hCG was still able to stimulate the production of progesterone by PMA-pretreated cells. However, PMA pretreatment blocked the ability of PGF2α to stimulate progesterone production. It is possible that the luteotrophic effect of PGF2α may be mediated, in part, by the activation of protein kinase C. Addition of PGF2α to suspensions of human luteal cells preincubated with myo-[2-3H]inositol promoted an increase in labelled inositol phosphates. PGF2α also rapidly increased intracellular free Ca2+ in human luteal cells loaded with the fluorescent Ca2+ probe, fura-2. We conclude that PGF2α and PMA stimulate progesterone production and that PGF2α increases the intracellular free calcium and inositol phosphates of human cultured luteal cells in the mid-luteal phase. Journal of Endocrinology (1992) 133, 451–458


1996 ◽  
Vol 148 (1) ◽  
pp. 59-67 ◽  
Author(s):  
W C Duncan ◽  
A S McNeilly ◽  
P J Illingworth

Abstract Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a specific inhibitor of a group of proteolytic enzymes known as matrix metalloproteinases. These enzymes have been widely implicated in the process of tissue remodelling. Extensive remodelling occurs in the corpus luteum during luteolysis unless human chorionic gonadotrophin (hCG) is produced by the early conceptus. This study aimed to investigate the expression and localisation of TIMP-1 in human corpora lutea during the luteal phase of the cycle and after luteal rescue with exogenous hCG to mimic the changes of early pregnancy. Human corpora lutea from the early (n = 4), mid- (n=4) and late (n=4) luteal phases and after luteal rescue by hCG (n=4) were obtained at the time of hysterectomy. Expression of TIMP-1 was investigated in these tissues by Western blotting, immunohistochemistry, Northern blotting and in situ hybridisation. Luteal cells of thecal origin were distinguished from those of granulosa origin by immunostaining for 17α-hydroxylase. A 30 kDa protein consistent with TIMP-1 was detected in human corpora lutea. This protein was localised to the granulosa lutein cells in all tissues examined. TIMP-1 mRNA was found in large quantities in all glands examined and this again localised to the granulosa lutein cells. The expression and localisation of TIMP-1 did not change throughout the luteal phase and was not altered by luteal rescue. The function of this uniform expression of TIMP-1 in the corpus luteum is not clear but these data suggest that the inhibition of structural luteolysis during maternal recognition of pregnancy is not mediated by regulation of TIMP-1 expression. Journal of Endocrinology (1996) 148, 59–67


1982 ◽  
Vol 95 (1) ◽  
pp. 65-70 ◽  
Author(s):  
G. J. S. Tan ◽  
R. Tweedale ◽  
J. S. G. Biggs

The effects of oxytocin on dispersed luteal cells from human corpora lutea of the menstrual cycle were studied. Oxytocin at a concentration of 4 mi.u./ml produced a slight increase in basal progesterone production. However, higher oxytocin concentrations (400 and 800 mi.u./ml) markedly inhibited both basal and human chorionic gonadotrophin-induced progesterone production. These data provide evidence for an effect of oxytocin on the human corpus luteum. In view of the inhibitory action of oxytocin, increased secretion of this hormone may be important in the demise of the corpus luteum at the end of the menstrual cycle.


1987 ◽  
Vol 115 (3) ◽  
pp. R21-R23 ◽  
Author(s):  
S.R. Davis ◽  
Z. Krozowski ◽  
R.I. McLachlan ◽  
H.G. Burger

ABSTRACT We report inhibin α- and βA -subunit gene expression in the human corpus luteum and placenta using human α-subunit and bovine βA -subunit nucleic acid probes. In addition, we have demonstrated the presence of immunoreactive and bioactive inhibin in human corpora lutea. Our findings suggest that this tissue is a significant source of inhibin during the luteal phase of the normal human menstrual cycle.


Reproduction ◽  
2006 ◽  
Vol 132 (4) ◽  
pp. 589-600 ◽  
Author(s):  
Hamish M Fraser ◽  
Helen Wilson ◽  
Christine Wulff ◽  
John S Rudge ◽  
Stanley J Wiegand

The intense angiogenesis characteristic of early corpus luteum development is dependent upon vascular endothelial growth factor (VEGF) as inhibitors of VEGF administered at the peri-ovulatory period suppress endothelial cell proliferation and progesterone secretion. We now report that administration of VEGF Trap, a soluble decoy receptor-based inhibitor, at the mid- or the late luteal phase in the marmoset results in a rapid decline in plasma progesterone. Since vascularisation of the corpus luteum is largely complete by the mid-luteal phase, it suggested that this functional luteolysis involved mechanisms other than inhibition of angiogenesis. A second experiment investigated the role of VEGF in maintaining the integrity of the luteal vasculature and hormone-producing cells. VEGF Trap was administered to marmosets in the mid-luteal phase and ovaries were obtained 1, 2, 4 or 8 days later for localisation of activated caspase-3 staining in the corpus luteum and compared with those obtained 2, 4 and 8 days after administration of control protein. The number of cells with activated caspase-3 staining was significantly increased after administration of VEGF Trap. Dual staining of activated caspase-3 with the endothelial cell marker CD31 showed that at 1 day post-treatment, more than 90% caspase-3-stained cells were vascular endothelium, prior to detection of an increasing incidence in death of hormone-producing cells on days 2 and 4. Staining with CD31 showed that the endothelial cell area was decreased after treatment. By 8 days after treatment, corpora lutea had regressed to varying degrees, while all control corpora lutea remained healthy. These results show that VEGF inhibition in the mid- or the late luteal phase induces functional luteolysis in the marmoset that is associated with premature and selective death of endothelial cells.


1985 ◽  
Vol 104 (1) ◽  
pp. 149-151 ◽  
Author(s):  
M. C. Richardson ◽  
G. M. Masson

ABSTRACT Suspensions of luteal cells were prepared from samples of human corpora lutea obtained during the luteal phase of menstrual cycles. Addition of oxytocin (1 μmol/l) to the various cell preparations had no effect on either basal production of progesterone or on steroidogenic responses to a range of concentrations of gonadotrophin. J. Endocr. (1985) 104, 149–151


Reproduction ◽  
2001 ◽  
pp. 865-873 ◽  
Author(s):  
G Iniguez ◽  
A Villavicencio ◽  
F Gabler ◽  
A Palomino ◽  
M Vega

The presence of insulin-like growth factors (IGF), IGF binding proteins (IGFBP) and IGF receptor type 1 (IGF-IR) in the human corpus luteum was investigated by examining the expression and production of related proteins throughout the lifespan of the corpus luteum and the action of nitric oxide upon their production. The expression of proteins in corpora lutea from the early, mid-and late luteal phases was assessed by immunohisto-chemistry, evaluated by a semi-quantitative analysis and the functional study was performed in corpus luteum explants incubated with nitric oxide donors. IGF-I and -II and IGFBP-1 and -3 were measured in the culture media by specific immunoassays. The results showed that IGF-I and -II, IGFBP-1 to -6 and IGF-IR were detected in the human corpus luteum throughout the luteal phase. Moreover, the expression and production of IGF-I and IGFBP-1 increased progressively from corpora lutea from the early to late luteal phases (P < 0.05), whereas the expression and production of IGFBP-2, -4 and -5 were significantly higher in corpora lutea from the mid-luteal phase (P < 0.05). No differences were observed in the expression of IGF-II, IGFBP-3 and -6 and IGF-IR throughout the lifespan of the corpus luteum. However, functional studies showed that nitric oxide donors elicited a stimulatory action on production of IGF-I in corpora lutea from the early luteal phase (80%) and on production of IGFBP-1 in corpora lutea from the late luteal phase (50%) (P < 0.05), whereas production of IGF-II and IGFBP-3 was not affected by nitric oxide. In conclusion, the components of the IGF-IGFBP system are expressed in the human corpus luteum throughout its lifespan. Nitric oxide regulates IGF-I and IGFBP-1 production, indicating that the growth factors may serve, at least in part, as mediators of the action of nitric oxide in the human corpus luteum.


Sign in / Sign up

Export Citation Format

Share Document