Effect of cortisol on the response to gonadotrophin releasing hormone in the boar

1983 ◽  
Vol 97 (1) ◽  
pp. 75-81 ◽  
Author(s):  
R. M. Liptrap ◽  
J. I. Raeside

The effect of intracarotid perfusion of 40 mg cortisol for 1 h on the hormonal response to three different doses of an intramuscular injection of synthetic gonadotrophin releasing hormone (GnRH) was compared to that of GnRH injected during intracarotid perfusion with 0·9% (w/v) NaCl solution in five boars. The increase in production of LH, above basal values, in response to injection of 0·25 μg GnRH midway through perfusion was only slightly greater (P > 0·05) in boars receiving cortisol compared to that when the same boars received saline. When 0·5 μg GnRH was injected midway through perfusion, a significantly greater (P<0·05) increase in production of LH above basal levels occurred during cortisol administration than occurred when saline was given. Injection of 1·0 μg GnRH in boars during cortisol perfusion resulted in significantly greater (P<0·01) production of LH, above basal levels, compared to the increase above basal levels that resulted when this dose of GnRH was given during intracarotid saline treatment. Increases in plasma values of testosterone reflected the increases in levels of LH. The results suggest that acute elevations in plasma cortisol may, under some circumstances, enhance the increased production of LH in the boar by increasing the responsiveness of the anterior pituitary gland to GnRH.

1978 ◽  
Vol 76 (2) ◽  
pp. 211-218 ◽  
Author(s):  
K. K. SEN ◽  
K. M. J. MENON

Specific oestradiol binding to a receptor in nuclear and cytosol fractions of the rat anterior pituitary gland and pituitary responsiveness to gonadotrophin releasing hormone (GnRH) during the oestrous cycle have been studied. To accomplish this, both unoccupied and occupied oestradiol-binding sites in the cytosol and oestradiol-binding sites in the nucleus and total cell were measured during the oestrous cycle. The concentration of unoccupied and occupied sites and total oestradiol binding in the cytosol fluctuated during the cycle. At pro-oestrus, the concentration of cytosol receptor was diminished by about 40% and replenishment occurred during oestrus. On the other hand, a profound increase in concentrations of cellular and nuclear receptors occurred at pro-oestrus. Administration of GnRH significantly stimulated LH release at all stages of the cycle. The maximum stimulation of LH release by GnRH was observed at 13.00 h of pro-oestrus. From these studies, it is concluded that pituitary responsiveness to exogenous GnRH during pro-oestrus parallels the changes in the content of oestrogen receptors in the cytosol and nucleus.


1977 ◽  
Vol 72 (3) ◽  
pp. 301-311 ◽  
Author(s):  
A. E. PANERAI ◽  
IRIT GIL-AD ◽  
DANIELA COCCHI ◽  
V. LOCATELLI ◽  
G. L. ROSSI ◽  
...  

SUMMARY To determine how the sensitivity of the ectopic anterior pituitary gland to the GH-releasing effect of thyrotrophin releasing hormone (TRH) might be affected by the time lapse from transplantation, TRH (0·15 and 0·6 μg) was injected i.v. into hypophysectomized (hypox)-transplanted rats under urethane anaesthesia 1,3, 8,15, 30 and 60 days after transplantation, and plasma samples were taken 5 and 10 min later. Baseline GH values gradually decreased with time from about 16·0 ng/ml (1 day) to about 3·0 ng/ml (30 and 60 days). The TRH-induced GH release was absent 1 day after transplantation, present only with the higher TRH dose 3 and 8 days after transplantation, and clearly elicitable, also with the lower TRH dose (0·15 μg), from 15 up to 60 days. Determination of plasma prolactin concentrations showed a decline from about 85·0 ng/ml (1 day) to about 32·0 ng/ml (8 days); subsequently (15–60 days) prolactin values stabilized. Plasma prolactin levels increased 15 and 60 days after transplantation only when a dose of 0·6 μg TRH was given. In intact weight-matched rats, TRH induced a GH response only at the dose of 1·2 μg while a short-lived but clear-cut prolactin response could be obtained even with the 0·3 μg dose. The present results indicate that: (1) disconnexion between the central nervous system and the anterior pituitary gland greatly enhances GH responsiveness while blunting prolactin responsiveness to TRH; (2) the sensitivity of the anterior pituitary gland to the GH-releasing effect of TRH increases with time from transplantation; (3) TRH is a more effective prolactin-than GH-releaser on the pituitary gland in situ.


2011 ◽  
Vol 23 (6) ◽  
pp. 780 ◽  
Author(s):  
Magdalena Ciechanowska ◽  
Magdalena Łapot ◽  
Tadeusz Malewski ◽  
Krystyna Mateusiak ◽  
Tomasz Misztal ◽  
...  

There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo–pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo–anterior pituitary unit.


1984 ◽  
Vol 103 (3) ◽  
pp. 371-376 ◽  
Author(s):  
M. J. D'Occhio ◽  
B. P. Setchell

ABSTRACT The capacity of the anterior pituitary gland and testes in mature bulls (705±9 (s.e.m.) kg body wt, n = 4) to respond to graded doses of LH-releasing hormone (LHRH) was assessed relative to endogenous profiles of LH and testosterone secretion. Endogenous hormone profiles were determined by bleeding bulls at 20-min intervals for 12 h. Responses to LHRH were assessed on successive days after single intravenous injections of 1, 5, 10, 50 or 100 ng LHRH/kg body wt. Blood samples were taken at −40, −20, 0, 10, 20, 30, 40, 60 and 120 min relative to LHRH injection. During a 12-h bleed bulls showed spontaneous pulses of LH and testosterone which had peak amplitudes of 2·6±0·5 μg/l and 44·5 ± 7·1 nmol/l respectively. Respective peak LH (μg/l) and testosterone (nmol/l) responses to LVRH were as follows: 1 ng LHRH (3·0±0·7: 47·3±4·1); 5 ng LHRH (8·0±1·2; 52·8 ± 6·2); 10 ng LHRH (11·1±2·3; 57·7 ± 9·1); 50 ng LHRH (19·2±2·8; 47·9±8·6); 100 ng LHRH (19·1±4·7; 43·9 ±6·4). A dose of 1 ng LHRH/kg produced LH and testosterone responses which were comparable in amplitude to spontaneous peaks in the respective hormone. There was a linear (y = 0·28x+5·72; r = 0·81) increase in the LH response to doses of LVRH between 1 and 50 ng/kg; corresponding testosterone responses showed no relationship with the dose of LHRH. The capacity of the anterior pituitary gland to release amounts of LH eight to ten times in excess of those secreted during spontaneous peaks suggests that (1) there exists a large releasable store of LH in the anterior pituitary gland and (2) hypothalamic LHRH is a limiting factor in gonadotrophin secretion. In contrast to LH release, the androgenic response of the testes to acute gonadotrophic stimulation is determined largely by prevailing steroidogenic activity. J. Endocr. (1984) 103, 371–376


1985 ◽  
Vol 107 (1) ◽  
pp. 83-87 ◽  
Author(s):  
L. Persson ◽  
M. Nilsson ◽  
E. Rosengren

ABSTRACT The biosynthesis of polyamines, an ubiquitous group of amines shown to be essential for normal cellular growth and differentiation, was studied in the rat anterior pituitary gland during the different stages of the oestrous cycle. The activity of ornithine decarboxylase (ODC), which catalyses the rate-limiting step in the biosynthesis of polyamines, was low during oestrus, metoestrus and dioestrus. However, a marked transitory rise in ODC activity was found in the pituitary gland on the evening of pro-oestrus. The rise in ODC activity was accompanied by an increase in the pituitary content of the polyamines putrescine and spermidine. Ovariectomy did not significantly change the basal ODC activity in the pituitary gland. Oestrogen treatment of ovariectomized rats resulted in a marked stimulation of pituitary polyamine biosynthesis. The largest effects were observed when oestrogen was given as two injections 72 h apart, which gave rise to levels of ODC activity comparable to those observed on the evening of pro-oestrus. The increase in polyamine synthesis in the anterior pituitary gland during pro-oestrus appeared not to be related to the preovulatory secretion of LH or prolactin, since neither LH-releasing hormone nor thyrotrophin-releasing hormone (which induces a secretion of prolactin) affected pituitary ODC activity. The observed biosynthesis of polyamines may be associated with the cellular proliferation which occurs in the anterior pituitary gland at oestrus. J. Endocr. (1985) 107, 83–87


Sign in / Sign up

Export Citation Format

Share Document