Antioestrogen inhibition of oestradiol-induced alterations in hypothalamic noradrenaline turnover

1985 ◽  
Vol 106 (1) ◽  
pp. 37-42 ◽  
Author(s):  
C. Hiemke ◽  
B. Poetz ◽  
R. Ghraf

ABSTRACT Long-term (4–6 weeks) ovariectomized rats were injected with either oestradiol benzoate (OB; 20 μg s.c.) or monohydroxytamoxifen (MTAM; 0·2 mg i.p.) plus OB. Oestradiol benzoate was administered at 12.00 h on day 0 and MTAM was given immediately before OB, followed by further injections twice daily to maintain sufficiently high antioestrogen levels. When given alone, OB reduced the serum levels of LH during the morning (08.00–09.00 h) and afternoon (17.30–18.30 h) hours of day 3 after priming. The feedback actions of OB on LH release were accompanied by time-dependent alterations of noradrenaline turnover in the preoptic–anterior hypothalamic brain area (POAH). On day 3 after priming the noradrenaline turnover rate was reduced in the morning and increased in the afternoon. The increase correlated with an enhanced sensitivity of the LH secretory system to progesterone. The antioestrogen MTAM blocked the OB-induced sensitization of LH release to the stimulatory action of progesterone and interfered with the stimulatory long-term effect of oestradiol on hypothalamic noradrenaline turnover. The data strongly support the view that the oestrogen-induced afternoon increase of noradrenaline turnover in the POAH represents a pre-requisite for the induction of LH surges. The stimulatory effect of oestradiol on hypothalamic noradrenaline turnover seems to be mediated by a classical oestrogen receptor mechanism. J. Endocr. (1985) 106, 37–42

1983 ◽  
Vol 97 (3) ◽  
pp. 437-445 ◽  
Author(s):  
C. Hiemke ◽  
D. Frohne ◽  
D. Bruder ◽  
R. Ghraf

At noon, long-term (4–6 weeks) ovariectomized rats were exposed for 6–78 h to a single subcutaneous injection of oestradiol benzoate (20 μg) which significantly reduced the serum levels of LH over the whole time-interval investigated. The negative feedback action of oestradiol was accompanied by reduced turnover of both noradrenaline and dopamine in the preoptic-anterior hypothalamic brain area (POAH), but not in the mediobasal hypothalamus, 6, 68 and 72 h after administration of the hormone. Between 72 and 78 h after oestradiol-priming an afternoon increase of noradrenaline turnover was observed in the POAH. In rats primed with oestradiol benzoate for 72 h, short-term exposure (6 h) to progesterone (2·5 mg) induced a marked surge of serum LH and FSH in the late afternoon. In the POAH of these rats progesterone did not interfere with the afternoon increase of noradrenaline turnover induced by oestradiol-priming. However, it markedly increased the dopamine turnover rate of primed rats, thus reversing the inhibitory action of oestradiol benzoate on the dopaminergic system of the POAH. It is concluded that both the noradrenergic and the dopaminergic neurones of the POAH are involved in the negative and positive feedback actions of oestradiol and progesterone on LH and FSH release. The paper discusses whether the oestradiol-induced afternoon increase in noradrenaline turnover represents a prerequisite for the induction of LH surges by progesterone.


1985 ◽  
Vol 106 (3) ◽  
pp. 303-309 ◽  
Author(s):  
C. Hiemke ◽  
D. Bruder ◽  
M. C. Michel ◽  
R. Ghraf

ABSTRACT Long-term ovariectomized rats received a single injection of 20 μg oestradiol benzoate (OB) which reduced the serum levels of LH for at least 3 days. The inhibitory effects were accompanied by time-dependent alterations of noradrenaline and dopamine turnover rates in the mediobasal hypothalamus (MBH) and the preoptic-anterior hypothalamic brain area (POAH). Oestradiol markedly interfered with the time-dependent variations of noradrenaline and dopamine turnover seen in the MBH of untreated ovariectomized animals during daylight hours. In the POAH the turnover rate of noradrenaline decreased 2 days after priming with OB and then increased in the afternoon of day 3. The increase of noradrenaline turnover in the POAH was accompanied by a low afternoon turnover rate of dopamine in the M BH and by an increased sensitivity of the LH secretory system to progesterone. Dopamine and noradrenaline turnover involve a time element. While the negative feedback actions of oestradiol do not seem to be associated with changes in dopamine or noradrenaline turnover, the results support the view that the induction of LH afternoon surges depends upon an increase of stimulatory noradrenergic inputs to the POAH and a decrease of inhibitory dopaminergic inputs in the MBH. J. Endocr. (1985) 106, 303–309


1980 ◽  
Vol 86 (3) ◽  
pp. 511-524 ◽  
Author(s):  
D. K. SARKAR ◽  
G. FINK

The concentration of LH releasing factor (LH-RF) was measured by radioimmunoassay in blood collected from the cut pituitary stalk of long-term ovariectomized rats anaesthetized with Althesin. Stalk plasma LH-RF concentrations were increased immediately after ovariectomy (carried out at oestrus) and low at 2 and 4 days after operation. The concentrations then began to increase to reach a level at 24–28 days which was significantly higher than the concentrations during the oestrous cycle except for the time of the ovulatory surge at pro-oestrus. This pattern was similar to that of the concentrations of LH in jugular venous plasma taken from the same animals before exposure of the pituitary stalk. Like peripheral plasma LH concentrations, the concentrations of LH-RF in stalk plasma fluctuated and fell significantly and rapidly after the intravenous injection of 1 μg oestradiol-17β. The release of LH-RF in long-term ovariectomized rats, into which had been implanted an oestradiol-containing Silastic capsule, was similar to the diurnal pattern of LH release; the afternoon increase in stalk plasma LH-RF concentration could be blocked by sodium pentobarbitone administered at 13.00 h and augmented by administering this anaesthetic at 13.00 h of the preceding day. The stalk plasma LH-RF concentrations in animals injec[unk]d with oestradiol benzoate (OB) followed 72 h later with either OB or progesterone were lower than the concentrations in animals injected only with oil. These data show that in the rat (1) ovarian steroids could moderate LH release ('negative feedback') by inhibiting LH-RF release, and that in long-term ovariectomized animals (2) the oestradiol-induced circadian pattern of LH release is due to a circadian pattern of LH-RF release, and (3) the surge of LH produced by administering OB followed by either OB or progesterone is probably due mainly to a massive increase in the responsiveness of the anterior pituitary gland to LH-RF.


1982 ◽  
Vol 99 (3) ◽  
pp. 321-325 ◽  
Author(s):  
M. Motta ◽  
L. Martini

Abstract. The intraventricular injection of 25 μg of Methionine-Enkephalin (Met-Enk) induces a significant increase of serum LH levels in long-term ovariectomized rats 15, 30 and 60 min following administration. The synthetic Met-Enk agonistic analogue [D-Ala2]Methionine-Enkephalinamide ([D-Ala2]Met-Enk) also enhances significantly serum LH levels at 30 and 60 min; under the same experimental conditions neither Met-Enk nor [D-Ala2]Met-Enk modifies serum levels of FSH following intraventricular injections into ovariectomized animals. It is concluded that, under particular circumstances, opioid peptides of the Met-Enk family may stimulate LH release.


1992 ◽  
Vol 70 (7) ◽  
pp. 963-969 ◽  
Author(s):  
Gabriela T. Pérez ◽  
Marta E. Apfelbaum

The purpose of the present experiments was to examine the short- and long-term effects of estradiol-17β (E2), progesterone (P), and 5α-dihydrotestosterone (DHT), alone and in combination, on the gonadotrophin-releasing hormone (GnRH)-induced luteinizing hormone (LH) secretion, using an ovariectomized rat pituitary cells culture model. After 72 h in steroid-free medium, pituitary cells were further cultured for 24 h in medium with or without E2 (1 nM), P (100 nM), or DHT (10 nM). Cultures were then incubated for 5 h in the absence or presence of 1 nM GnRH with or without steroids. LH was measured in the medium and cell extract by radioimmunoassay. The results show that the steroid hormones exert opposite effects on the release of LH induced by GnRH, which seems to be dependent upon the length of time the pituitary cells have been exposed to the steroids. In fact, short-term (5 h) action of E2 resulted in a partial inhibition (64% of control) of LH release in response to GnRH, while long-term (24 h) exposure enhanced (158%) GnRH-induced LH release. Similar results were obtained with DHT, although the magnitude of the effect was lower than with E2. Conversely, P caused an acute stimulatory action (118%) on the LH released in response to GnRH and a slightly inhibitory effect (90%) after chronic treatment. GnRH-stimulated LH biosynthesis was also influenced by steroid treatment. Significant increases in total (cells plus medium) LH were observed in pituitary cells treated with E2 or DHT. While the stimulatory effect of E2 was evident after both acute (133%) and chronic (119%) treatment, that of DHT appears to be exerted mainly after long-term priming (118%). These results suggest that the steroids modulate GnRH-induced LH secretion by acting on both synthesis and release of LH. On the other hand, total hormone content was not affected by P. The acute (5 h) effects of E2, P, and DHT on the GnRH response in E2-primed (24 h) cells during a short-term incubation, were also tested. Addition of P to the pituitary cells primed with E2 led to an acute potentiation of the stimulatory effect of E2 on GnRH-induced LH release and total content. Conversely, the augmentative E2 effect on pituitary responsiveness to GnRH was abolished by DHT. Taken together, these findings suggest that the physiological significance of the stimulatory action of progesterone could be to define the final magnitude of the LH preovulatory surge, while the inhibition by DHT could be required to limit the LH surge to that day of proestrus.Key words: luteinizing hormone, gonadotrophin-releasing hormone, steroid hormones, cultured pituitary cells.


1975 ◽  
Vol 64 (1) ◽  
pp. 27-35 ◽  
Author(s):  
F. R. BURNET ◽  
P. C. B. MACKINNON

SUMMARY The rate of [35S]methionine incorporation into protein in discrete cerebral areas was measured before and after the administration of oestradiol benzoate (OB) to chronically ovariectomized rats. The circadian rhythm of incorporation which is normally seen in the intact cyclic female rat was deleted by ovariectomy. A daily rhythm of incorporation reappeared, however, in all the brain areas studied 30 h after a single injection of OB (20 μg), and was still present 12 days later. The release of luteinizing hormone (LH) after administration of 20 μg OB was measured in chronically ovariectomized animals and was found to be biphasic. High levels of LH after ovariectomy were initially reduced by negative feedback, but this phase was followed 52 h later by a facilitation of LH release between 15.00 and 18.00 h. The facilitation of LH release at this time of day was still detectable 12 days after the initial injection. The evidence for a functional link between the rhythm of neural activity which is reflected by [35S]methionine incorporation, and the ability to 'time' the facilitation of LH release is discussed.


1997 ◽  
Vol 154 (2) ◽  
pp. 241-248 ◽  
Author(s):  
C Aurich ◽  
J Lange ◽  
H-O Hoppen ◽  
J E Aurich

Abstract The aim of this study was to investigate the influence of oestradiol, melatonin and season on the opioid regulation of LH and prolactin release. Effects of the opioid antagonist naloxone (0·5 mg/kg) on LH and prolactin secretion were determined in ovariectomized pony mares. In experiment 1, mares in January (n=6) were pretreated with oestradiol benzoate (5 μg/kg) for 20 days. In experiment 2, beginning in May, mares (n=7) received melatonin (15 mg) for 15 days and subsequently a combination of melatonin plus oestradiol for 20 days. In experiment 3, beginning in May, mares (n=6) were pretreated with oestradiol for 30 days, left untreated for 12 days and then given melatonin for 35 days. In all experiments the animals were injected with the opioid antagonist naloxone and saline on 2 consecutive days prior to treatment. In experiment 1, animals received naloxone and saline on days 10 and 11 and 20 and 21 following oestradiol treatment. In experiment 2, naloxone and saline were administered on days 15 and 16 following melatonin treatment and on days 10 and 11 and 20 and 21 of melatonin plus oestradiol treatment. In experiment 3, the animals received naloxone and saline on days 10 and 11, 20 and 21 and 30 and 31 of oestradiol treatment, prior to melatonin treatment and on days 15 and 16, 25 and 26 and 35 and 36 following melatonin. In January (experiment 1), naloxone evoked a significant (P<0·05) LH release at all times, however the LH increment in response to naloxone increased during oestradiol pretreatment (P<0·05) During the breeding season (experiments 2 and 3), naloxone induced a significant (P<0·05) increase in plasma LH concentrations when mares had not been pretreated with oestradiol or melatonin and after oestradiol pretreatment. Basal LH concentrations and the LH increment in response to naloxone increased significantly (P<0·05) during the 30-day oestradiol pretreatment. Melatonin decreased the naloxone-induced LH release and the LH release in response to naloxone and saline no longer differed after 25 and 35 days of melatonin pretreatment. When melatonin was given together with oestradiol for 20 days, again a significant (P<0·05) LH release in response to naloxone occurred. Prolactin release was significantly (P<0·05) increased by naloxone when mares had been pretreated with only melatonin. The opioid antagonist did not affect prolactin release in mares that had not been pretreated or received oestradiol either alone or in combination with melatonin. In conclusion, in long-term ovariectomized mares, opioids inhibit LH secretion independent from ovarian factors. This opioid inhibition of LH secretion is enhanced by oestradiol and reduced by melatonin. Although short-term melatonin treatment in-activates the opioid regulation of LH release, a prolonged influence of melatonin as occurs in winter does not prevent activation of the opioid system. This indicates that effects of melatonin on the opioid regulation of LH release change with time. An opioid inhibition of prolactin secretion is activated by melatonin given for 15–35 days but is lost under the prolonged influence of a short-day melatonin signal in winter. Journal of Endocrinology (1997) 154, 241–248


1993 ◽  
Vol 139 (2) ◽  
pp. 253-258 ◽  
Author(s):  
A. M. Salicioni ◽  
R. W. Carón ◽  
R. P. Deis

ABSTRACT There is evidence that the adrenals play a role in the regulation of the synthesis and release of gonadotrophins in various vertebrates. The aim of this study was to determine the part played by adrenal steroids, with special reference to progesterone, on the concentration of LH in ovariectomized (OVX) and oestrogen-primed rats. OVX rats received a single s.c. injection of vehicle or oestradiol benzoate (OB, 20 μg/rat). This day was designated as day 0. Three or four days later (day 3–day 4), the rats were treated with mifepristone (10 mg/kg) or with two doses of progesterone antiserum and blood samples were obtained at 13.00 and 18.00 h. OB treatment of OVX rats reduced serum LH at 13.00 h and 18.00 h on day 3 but only at 13.00 h on day 4. The administration of mifepristone at 08.00 h to OVX and oestrogen-treated rats induced a significant increase in serum LH at 18.00 h on days 3 and 4, without modifying the values at 13.00 h. When mifepristone was given at 13.00 h a much larger increase in serum LH was obtained at 18.00 h. In OVX and oestrogen-treated rats, adrenalectomy on day 2 (08.00–09.00 h) induced an increase in serum LH at 18.00 h similar to that observed in the OVX and oestrogen-primed rats after mifepristone treatment. In order to determine the specificity of the effect of mifepristone, a group of OVX and oestrogentreated rats was injected with progesterone antiserum at 08.00 and 13.00 h on day 3. Serum LH concentrations at 13.00 and 18.00 h on day 3 were similar to values obtained in OVX rats treated with oestrogen and mifepristone. Serum progesterone was measured at 08.00 and 13.00 h in OVX and OVX and oestrogenprimed rats. At both times, values were similar in OVX rats but oestrogen treatment significantly increased serum progesterone levels. The important role of adrenal progesterone on the regulation of LH secretion in OVX and oestrogen-primed rats is evident from these results. Blocking progesterone action at the receptor level, we showed that OB significantly increased LH values at 18.00 h. On the basis of these studies it is tempting to speculate on the possibility of an inhibitory or stimulatory effect of oestrogen on serum LH concentration in OVX rats, according to the presence or absence of adrenal progesterone action. Journal of Endocrinology (1993) 139, 253–258


1983 ◽  
Vol 98 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Shigehiro Katayama ◽  
Jack Fishman

Rats with 4-day oestrous cycles, implanted with intracardiac catheters, were injected with 2-hydroxyoestrone at noon on pro-oestrus and their plasma LH levels monitored at frequent intervals thereafter. A dose of 100 μg 2-hydroxyoestrone completely abolished the preovulatory LH rise in four out of ten animals tested, showing no effect in the six others. When an injection of 10 μg oestradiol 1 h before the 2-hydroxyoestrone administration was given all the rats showed an absence of the preovulatory LH surge, while it remained intact in the controls treated with oestradiol only. The principal metabolite of 2-hydroxyoestrone, 2-methoxyoestrone, exhibited no influence on the pituitary gonadotrophin release. Repeated injections of 100 pg doses of 2-hydroxyoestrone to long-term ovariectomized rats produced no change in plasma LH and prolactin levels. In animals primed with oestradiol benzoate, 2-hydroxyoestrone given 1–2 h after the priming dose blocked the phasic release of the pituitary hormones on the afternoon of the 2 subsequent days. The LH and prolactin surges in the primed animals, however, were not affected when the catechol oestrogen was injected 2 h before their appearance. These results indicate that in the cyclic rat exogenous 2-hydroxyoestrone inhibits the preovulatory LH surge when its administration is coincident with the preovulatory oestradiol rise. In the ovariectomized rat 2-hydroxyoestrone inhibits the oestrogen-dependent priming step but does not affect either the oestrogen-independent expression of the induced surges or the tonic secretion of these pituitary hormones. These results indicate a dissociation of central and peripheral activities in this oestradiol metabolite and suggest that this catechol oestrogen functions as an oestrogen antagonist in neuroendocrine events. Since catechol oestrogens can be formed in the brain these pharmacological responses may reflect physiological mechanisms.


1978 ◽  
Vol 76 (2) ◽  
pp. 193-202 ◽  
Author(s):  
A. O. DONOSO

The levels of prolactin and LH in the plasma of rats were determined at various times after intraventricular injection of histamine. Doses of 5 and 60 μg histamine (free base) in male rats, anaesthetized with ether, induced an increase in the level of prolactin in the plasma, whilst producing a slight decrease in the concentration of LH. Injection of 5 μg histamine at 14.00 h into female rats at all stages of the oestrous cycle caused prolactin to be released; the effect was greatest at oestrus and at day 1 of dioestrus. Histamine also gave rise to a marked increase in the level of LH in the plasma when administered to pro-oestrous rats, but had no effect when injected at the other stages of the oestrous cycle. The effect of histamine on the release of prolactin in ovariectomized, oestradiol benzoate: progesterone-primed (OVX,OB:P) rats was found to be dose-related, and the level of LH in the plasma was increased by as little as 1·25 μg. Pretreatment with adrenergic (phenoxybenzamine and propranolol) and cholinergic (atropine) antagonists failed to block the stimulatory effects of histamine on prolactin secretion, but pretreatment with methysergide (serotonin antagonist) increased the histamine-induced release of prolactin in male rats. Antagonists did not modify the response of prolactin to histamine in OVX,OB:P-primed rats. The histamine-induced release of LH in OVX,OB:P-primed rats was slightly reduced by pretreatment with phenoxybenzamine, propranolol and atropine, but not by methysergide. These results indicate that histamine facilitates the release of prolactin. The stimulatory action of histamine on both pro-oestrous and OVX,OB:P-primed but not male rats suggests that histamine may be involved in LH release in the rat. Results obtained in animals pretreated with transmitter antagonists, which were unable to prevent histamine-induced hormone release, suggest that the actions of this amine are not mediated by cholinergic, noradrenergic or serotonergic mechanisms.


Sign in / Sign up

Export Citation Format

Share Document