Angiotensin II-mediated catecholamine release during the pressor response in rats

1994 ◽  
Vol 142 (1) ◽  
pp. 19-28 ◽  
Author(s):  
D G Butler ◽  
D A Butt ◽  
D Puskas ◽  
G Y Oudit

Abstract Angiotensin II (ANG II)-mediated catecholamine release and its possible contribution to the pressor response was assessed in baroreceptor-denervated rats. Neonatal male Sprague-Dawley rats were injected with the sympatholytic drug, guanethidine monosulphate (50 mg/kg s.c., 6 days/week) for 40 days. Plasma catecholamine concentrations were measured using a 3H-radioenzymatic assay as follows: (a) before and 30 s after the injection of saline or ANG II (79·3 pmol/kg i.v.), at the peak of the pressor response, then 50 s and 80 s thereafter, in guanethidine-treated (GUAN) and saline-injected (SHAM) rats, and (b) before and after adrenalectomy (ADX), following the same time-sequence for ANG II as in (a). Peak pressor responses to graded doses of ANG II (6·6, 26·4, 53·0 and 79·3 pmol/kg i.v.) were measured in GUAN+ADX and ADX rats. Destruction of peripheral sympathetic nerves was confirmed by measurements of plasma noradrenaline (NA), adrenaline (AD) and dopamine (DA) concentrations and by changes in pressor responses and heart rates following i.v. doses of tyramine. ANG II induced significantly (P<0·05) greater pressor responses in GUAN+ADX rats than in ADX rats, especially after the 53·0 and 79·3 pmol/kg doses. Plasma AD concentrations increased within seconds after the pressor response to ANG II in both GUAN and SHAM rats but there was no change in plasma NA or DA concentrations (P<0·05). ANG-II-mediated AD release from the adrenal medulla may contribute to the overall pressor action of the peptide. The vasculature became more sensitive to ANG II at a time when NA and DA depletion occurred following sympathectomy and/or adrenalectomy. This heightened sensitivity to ANG II was not due to a decrease in circulating ANG II in sympathectomized rats because even though plasma renin activity fell from 6·54 ±0·52 to 3·77 ±0·26 ng ANG I/ml per h it remained within the normal range. Journal of Endocrinology (1994) 142, 19–28

1985 ◽  
Vol 249 (1) ◽  
pp. E49-E55 ◽  
Author(s):  
R. P. Naden ◽  
S. Coultrup ◽  
B. S. Arant ◽  
C. R. Rosenfeld

Reduced vascular responsiveness to infused angiotensin II (ANG II) has been observed during pregnancy. It has been proposed that infusions produce lower circulating concentrations of ANG II in pregnancy, due to an increase in the metabolic clearance rate of ANG II (MCRangii). We have evaluated the MCRangii and the arterial plasma concentrations of ANG II during constant infusions of 1.15 micrograms ANG II/min into chronically instrumented pregnant (n = 6) and nonpregnant (n = 9) sheep. Although the pressor responses were significantly less in the pregnant than in the nonpregnant sheep (17.5 +/- 0.5 vs. 34.9 +/- 3.2 mmHg, P less than 0.001), the values for MCRangii were not different: 56.2 +/- 6.3 ml X min-1 X kg-1 in nonpregnant and 55.9 +/- 4.3 ml X min-1 X kg-1 in pregnant sheep. The steady-state plasma ANG II concentrations during the infusions were slightly less in pregnant than in nonpregnant sheep (388 +/- 36 vs. 454 +/- 36 pg/ml); however, this difference would be responsible for only a 2-mmHg reduction in the pressor response. We conclude that the reduced pressor response to infused ANG II in pregnancy is not due to an increase in MCRangii nor to lower plasma ANG II concentrations.


1979 ◽  
Vol 57 (s5) ◽  
pp. 47s-50s ◽  
Author(s):  
E. S. Marks ◽  
H. Thurston ◽  
R. F. Bing ◽  
J. D. Swales

1. The pressor response to angiotensin II was reduced in rats with early (&lt;6 weeks) and chronic (&gt;4 months) Goldblatt two-kidney, one-clip hypertension and enhanced in DOCA—salt hypertension. 2. Converting enzyme inhibition with captopril brought the angiotensin pressor response curves into closer proximity although the DOCA hypertensive rats were minimally hyper-responsive and rats with early and chronic renovascular hypertension showed slightly reduced responsiveness. 3. After bilateral nephrectomy the pressor responses to angiotensin were similar. 4. The pressor response to angiotensin II in these animals was inversely related to plasma renin concentration and therefore largely dependent upon receptor occupancy by endogenous angiotensin II. There is no evidence for enhanced pressor responsiveness to angiotensin in either renovascular or DOCA hypertension.


1990 ◽  
Vol 259 (3) ◽  
pp. E432
Author(s):  
C J Weaver ◽  
M D Johnson

Reduction of renal perfusion is followed by increases in plasma renin activity (PRA) and arterial pressure. The present experiments were designed to determine if an opiate antagonist would alter pressor or renin responses to acute reduction of renal arterial pressure (RAP) in anesthetized rats. Male Sprague-Dawley rats were anesthetized with Inactin, and an adjustable constrictor device was placed around the abdominal aorta proximal to the renal arteries. One-half of the animals were pretreated with the opiate antagonist naloxone (2 mg/kg iv), and the other one-half were pretreated with saline vehicle. The abdominal aorta was then constricted to reduce RAP by 25% (measured as femoral arterial pressure) in one-half of the animals in each pretreatment group. Compared with vehicle pretreatment, naloxone pretreatment did not alter the PRA response to aortic constriction; however, naloxone did attenuate the pressor response. We conclude that 1) the PRA response to acute reduction of renal arterial pressure is not dependent on an opiate mechanism in the rat, and 2) attenuation of the pressor response to aortic constriction by naloxone in intact rats is not secondary to a suppression of the PRA response.


1991 ◽  
Vol 261 (5) ◽  
pp. R1070-R1074 ◽  
Author(s):  
K. Ando ◽  
Y. Sato ◽  
A. Ono ◽  
K. Takahashi ◽  
T. Shimosawa ◽  
...  

To clarify the hypotensive effect of high dietary Ca intake on salt-sensitive hypertension, 7-wk-old Sprague-Dawley rats, 3.15% Na and/or 4.07% Ca diet loaded, were administered 125 ng/ml of angiotensin II (ANG II) intraperitoneally for 12 days. Compared with control rats (mean blood pressure 108 +/- 2 mmHg), ANG II administration caused hypertension (131 +/- 4 mmHg, P less than 0.05). Na loading enhanced the hypertensive effect of ANG II (161 +/- 4 mmHg, P less than 0.01). Dietary Ca loading did not significantly inhibit the pressor effect of ANG II alone (119 +/- 4 mmHg). However, Ca loading suppressed hypertension in ANG II-salt rats (126 +/- 4 mmHg, P less than 0.01). Plasma total catecholamine (norepinephrine + epinephrine) was increased in ANG II-salt rats (176 +/- 14 vs. 290 +/- 23 pg/ml, P less than 0.05), but Ca loading decreased plasma catecholamine (182 +/- 13 pg/ml, P less than 0.05). In contrast, plasma catecholamine was not significantly different between ANG II-treated rats with and without Ca loading. Ca loading increased serum Ca in ANG II rats (10.9 +/- 0.1 vs. 11.7 +/- 0.1 mg/dl, P less than 0.05) but did not do so significantly in ANG II-salt rats (10.8 +/- 0.2 vs. 10.9 +/- 0.1 mg/dl). Thus Ca loading exclusively ameliorated salt-sensitive hypertension, which was induced with ANG II administration and Na loading in rats, probably through suppression of the increased sympathetic activity. In addition, these effects of Ca loading were not mediated through an increased blood level of Ca.


1986 ◽  
Vol 251 (1) ◽  
pp. F34-F39 ◽  
Author(s):  
M. S. Paller ◽  
T. H. Hostetter

The effect of dietary protein on the renin-angiotensin system was studied in rats. Rats were fed isocaloric, 50% (high protein, HP), or 6% (low protein, LP) protein diets with identical electrolyte content for 10 days. Food intake and electrolyte excretion were equivalent on the two diets. Plasma renin activity (PRA) was higher in HP (10.0 +/- 2.5 vs. 3.5 +/- 0.5 ng ANG I . ml-1 . h-1, P less than 0.02) as was plasma aldosterone. However, in conscious rats mean arterial pressure (MAP) was not different between groups. The pressor response to graded doses of angiotensin II (ANG II) was diminished by 30-60% with HP (all doses, P less than 0.05). ANG II binding by mesenteric artery smooth muscle particles did not differ between HP and LP. Chronic administration of captopril did not normalize the pressor response in HP. Urinary prostaglandin (PG) E and 6-keto-PGF1 alpha excretion was markedly increased by the HP diet. Acute inhibition of prostaglandin synthesis with meclofenamate restored the pressor response to ANG II in HP to that in LP. In summary, a HP diet increased PRA, plasma aldosterone, urinary PGE, and 6-keto-PGF1 alpha and decreased pressor responsiveness to ANG II. Resistance to ANG II was not reversed by chronic converting enzyme inhibition but was abolished by inhibition of prostaglandin synthesis.


1989 ◽  
Vol 76 (5) ◽  
pp. 529-534 ◽  
Author(s):  
F. Broughton Pipkin ◽  
R. Morrison ◽  
P. M. S. O'Brien

1. The effects of angiotensin II (ANG II) infusion without and with simultaneous infusion of prostacyclin (PGI2; 1.4 pmol min−1 kg−1; 5 ng min−1 kg−1) have been studied in 16 women in second-trimester pregnancy. Ten received one infusion of ANG II alone, followed by its infusion together with PGI2; the remainder received two identical infusions of ANG II alone as controls. 2. PGI2 administration was associated with a small fall in diastolic pressure (P < 0.01) and a proportionally greater rise in heart rate (P < 0.001). Small rises in basal plasma renin and ANG II concentrations and a fall in aldosterone concentration were not statistically significant. 3. The diastolic pressor response to ANG II was blunted during PGI2 infusion by comparison with controls (P < 0.025); this diminution in response was greatest in patients who had initially been most sensitive to ANG II (P < 0.02). 4. The evoked increment in plasma aldosterone during ANG II infusion was considerably reduced (P < 0.005) in the presence of PGI2. 5. These data further support the hypothesis of a role for PGI2 in relation to the blunted pressor response to ANG II of normal pregnancy. The apparent inhibitory effects of PGI2 on aldosterone secretion may partly explain the previously described dissociation between the renin-angiotensin system and aldosterone in pregnancy.


1983 ◽  
Vol 244 (5) ◽  
pp. R641-R645
Author(s):  
D. F. Opdyke ◽  
J. Bullock ◽  
N. E. Keller ◽  
K. Holmes

Both 1,1-dimethyl-4-phenylpiperazinium iodide, a ganglionic stimulating drug (DMPP), and potassium ion (K+) cause a pressor response when injected into Squalus acanthias, an elasmobranch. The pressor responses are due to increased secretion of epinephrine and norepinephrine. The pressor response to DMPP can be blocked by prior infusion of hexamethonium, a ganglionic blocking drug. However, ganglionic blockade does not inhibit the pressor response to K+. Plasma catecholamine concentrations do not increase significantly in response to challenge with DMPP after hexamethonium infusion, but exceedingly high levels of plasma catecholamines quickly appear after K+ injection following hexamethonium infusion. It is concluded that there are at least two mechanisms controlling catecholamine secretion in the dogfish, one of which involves the ganglion cells that are intimately associated with chromaffin cells in the chromophil bodies that are so characteristic of this species and elasmobranchs in general.


1988 ◽  
Vol 255 (6) ◽  
pp. R882-R887 ◽  
Author(s):  
M. B. Gutman ◽  
D. L. Jones ◽  
J. Ciriello

Experiments were done to investigate the contribution of cells of the paraventricular nucleus of the hypothalamus (PVH) to the drinking and pressor responses elicited by microinjection of angiotensin II (ANG II) into the subfornical organ (SFO) in the awake unrestrained rat. Microinjection of ANG II (5 eta g in 0.2 microliter) elicited drinking (7.1 +/- 0.7 ml in 15 min, n = 18) and pressor (19 +/- 1 mmHg, n = 17) responses. Bilateral lesions of the PVH by the administration of kainic acid (KA; 0.2 microgram in 0.2 microliter of phosphate buffer) resulted in the abolition of the drinking response (before, 7.8 +/- 1.8 ml in 15 min; after, 0 ml in 15 min, n = 6) and significant (P less than 0.05) attenuation of the pressor response (before, 15 +/- 1 mmHg; after, 5 +/- 2 mmHg, n = 5). Administration of 0.2 microliter of the phosphate buffer vehicle bilaterally into the PVH and KA into regions adjacent to the PVH had no significant effect on the drinking or pressor responses. KA injections into the PVH resulted in the loss of 70-80% of parvocellular cells in the posterodorsal component of the PVH compared with animals with KA injections into adjacent non-PVH tissue (n = 7) or vehicle injection into the PVH (n = 5). These results suggest that parvocellular cells of the PVH are an important component of the neural circuitry that mediates the drinking and pressor response to ANG II acting at the SFO.


1982 ◽  
Vol 243 (1) ◽  
pp. R65-R69 ◽  
Author(s):  
R. G. Carroll ◽  
D. F. Opdyke

The interaction between angiotensin II (ANG II) and catecholamines was examined in nonmammalian vertebrates. ANG II challenge caused a significant pressor response in representatives of the seven vertebrate classes. Additionally, plasma levels of both epinephrine and norepinephrine increased following intravascular ANG II injection in the conscious lumpfish, bullfrog, and turtle, and the anesthetized chicken. Phentolamine pretreatment totally abolished ANG II pressor action in the hagfish and chicken and diminished the ANG II pressor response in other classes of vertebrates. The ability of ANG II to release catecholamines appears to be a phylogenetically ancient interaction and indicates that catecholamines may play an important role in the physiological expression of ANG II action in lower vertebrates.


2011 ◽  
Vol 301 (6) ◽  
pp. F1195-F1201 ◽  
Author(s):  
Liu Liu ◽  
Alexis A. Gonzalez ◽  
Michael McCormack ◽  
Dale M. Seth ◽  
Hiroyuki Kobori ◽  
...  

Renin expression in principal cells of collecting ducts (CD) is upregulated in angiotensin II (ANG II)-dependent hypertensive rats; however, it remains unclear whether increased CD-derived renin undergoes tubular secretion. Accordingly, urinary levels of renin (uRen), angiotensinogen (uAGT), and ANG II (uANG II) were measured in chronic ANG II-infused Sprague-Dawley rats (80 ng/min for 14 days, n = 10) and sham-operated rats ( n = 10). Systolic blood pressure increased in the ANG II rats by day 5 and continued to increase throughout the study ( day 13; ANG II: 175 ± 10 vs. sham: 116 ± 2 mmHg; P < 0.05). ANG II infusion increased renal cortical and medullary ANG II levels (cortical ANG II: 606 ± 72 vs. 247 ± 43 fmol/g; P < 0.05; medullary ANG II: 2,066 ± 116 vs. 646 ± 36 fmol/g; P < 0.05). Although plasma renin activity (PRA) was suppressed in the ANG II-infused rats (0.3 ± 0.2 vs. 5.5 ± 1.8 ng ANG I·ml−1·h−1; P < 0.05), renin content in renal medulla was increased (12,605 ± 1,343 vs. 7,956 ± 765 ng ANG I·h−1·mg−1; P < 0.05). Excretion of uAGT and uANG II increased in the ANG II rats [uAGT: 1,107 ± 106 vs. 60 ± 26 ng/day; P < 0.0001; uANG II: 3,813 ± 431 vs. 2,080 ± 361 fmol/day; P < 0.05]. By day 13, despite suppression of PRA, urinary prorenin content increased in ANG II rats [15.7 ± 3 vs. 2.6 ± 1 × 10−3 enzyme units excreted (EUE)/day, P < 0.01] as was the excretion rate of renin (8.6 ± 2 × 10−6 EUE/day) compared with sham (2.8 ± 1 × 10−6 EUE/day; P < 0.05). Urinary renin and prorenin protein levels examined by Western blot were augmented ∼10-fold in the ANG II-infused rats. Concomitant AT1 receptor blockade with candesartan prevented the increase. Thus, in ANG II-dependent hypertensive rats with marked PRA suppression, increased urinary levels of renin and prorenin reflect their augmented secretion by CD cells into the luminal fluid. The greater availability of renin and AGT in the urine reflects the capability for intratubular ANG II formation which stimulates sodium reabsorption in distal nephron segments.


Sign in / Sign up

Export Citation Format

Share Document