Evolution of angiotensin II-induced catecholamine release

1982 ◽  
Vol 243 (1) ◽  
pp. R65-R69 ◽  
Author(s):  
R. G. Carroll ◽  
D. F. Opdyke

The interaction between angiotensin II (ANG II) and catecholamines was examined in nonmammalian vertebrates. ANG II challenge caused a significant pressor response in representatives of the seven vertebrate classes. Additionally, plasma levels of both epinephrine and norepinephrine increased following intravascular ANG II injection in the conscious lumpfish, bullfrog, and turtle, and the anesthetized chicken. Phentolamine pretreatment totally abolished ANG II pressor action in the hagfish and chicken and diminished the ANG II pressor response in other classes of vertebrates. The ability of ANG II to release catecholamines appears to be a phylogenetically ancient interaction and indicates that catecholamines may play an important role in the physiological expression of ANG II action in lower vertebrates.

1994 ◽  
Vol 142 (1) ◽  
pp. 19-28 ◽  
Author(s):  
D G Butler ◽  
D A Butt ◽  
D Puskas ◽  
G Y Oudit

Abstract Angiotensin II (ANG II)-mediated catecholamine release and its possible contribution to the pressor response was assessed in baroreceptor-denervated rats. Neonatal male Sprague-Dawley rats were injected with the sympatholytic drug, guanethidine monosulphate (50 mg/kg s.c., 6 days/week) for 40 days. Plasma catecholamine concentrations were measured using a 3H-radioenzymatic assay as follows: (a) before and 30 s after the injection of saline or ANG II (79·3 pmol/kg i.v.), at the peak of the pressor response, then 50 s and 80 s thereafter, in guanethidine-treated (GUAN) and saline-injected (SHAM) rats, and (b) before and after adrenalectomy (ADX), following the same time-sequence for ANG II as in (a). Peak pressor responses to graded doses of ANG II (6·6, 26·4, 53·0 and 79·3 pmol/kg i.v.) were measured in GUAN+ADX and ADX rats. Destruction of peripheral sympathetic nerves was confirmed by measurements of plasma noradrenaline (NA), adrenaline (AD) and dopamine (DA) concentrations and by changes in pressor responses and heart rates following i.v. doses of tyramine. ANG II induced significantly (P<0·05) greater pressor responses in GUAN+ADX rats than in ADX rats, especially after the 53·0 and 79·3 pmol/kg doses. Plasma AD concentrations increased within seconds after the pressor response to ANG II in both GUAN and SHAM rats but there was no change in plasma NA or DA concentrations (P<0·05). ANG-II-mediated AD release from the adrenal medulla may contribute to the overall pressor action of the peptide. The vasculature became more sensitive to ANG II at a time when NA and DA depletion occurred following sympathectomy and/or adrenalectomy. This heightened sensitivity to ANG II was not due to a decrease in circulating ANG II in sympathectomized rats because even though plasma renin activity fell from 6·54 ±0·52 to 3·77 ±0·26 ng ANG I/ml per h it remained within the normal range. Journal of Endocrinology (1994) 142, 19–28


1986 ◽  
Vol 251 (3) ◽  
pp. H538-H546 ◽  
Author(s):  
A. Otsuka ◽  
K. L. Barnes ◽  
C. M. Ferrario

To generate quantitative data on the contribution of the area postrema (AP) to the pressor activity of angiotensin II (ANG II), the peptide (7 ng X kg-1 X min-1) was infused intravenously in 10 conscious dogs for 6 h before, and several weeks after, AP lesion. Mean arterial pressure (MAP) and heart rate (HR) were recorded continuously, and plasma renin activity (PRA), ANG II immunoreactivity (ANG II-IR), aldosterone (ALDO), arginine vasopressin (AVP), norepinephrine (NE), epinephrine (EPI), and serum Na+ and K+ were measured at 3 and 6 h. Three hours into the infusion, MAP averaged 123 +/- 2 compared with 96 +/- 2 mmHg for controls (P less than 0.01). The increases in pressure were associated with unchanged HR, but increased lability of MAP and HR. PRA fell, whereas plasma levels of ANG II-IR and ALDO rose. Plasma levels of AVP, NE, serum Na+ and K+ did not change, but plasma EPI was significantly elevated at 6 h. Removal of the AP produced mild hypotension and decreased lability. Within 8 to 21 days after AP ablation, a significant decrease in the plateau phase (3-6 h) of the ANG II pressor response was recorded in all dogs. The attenuation of the pressor effects was not sustained, since 4-7 wk after AP lesion, the increases in pressure were equivalent to those obtained during the control period. These data indicate that the AP participates in the production of the pressor response to intravenous infusion of ANG II in conscious dogs. However, in the absence of this structure, alternative mechanisms are brought into play to restore the loss of its function.(ABSTRACT TRUNCATED AT 250 WORDS)


1981 ◽  
Vol 241 (3) ◽  
pp. H381-H388 ◽  
Author(s):  
A. J. Brown ◽  
J. Casals-Stenzel ◽  
S. Gofford ◽  
A. F. Lever ◽  
J. J. Morton

Female Wistar rats were infused intravenously with 5% dextrose for 3 days, then with angiotensin II (ANG II) in 5% dextrose at 20 ng . kg-1 . min-1 for 7 days, and finally with dextrose for 2.5 days. ANG II raised mean arterial pressure (MAP) gradually; by the 7th day it was 49.7 mmHg higher than during the dextrose control period in the same rats. Control rats were infused with dextrose for 12.5 days; MAP did not change. Plasma ANG II concentration was measured during infusion. In hypertensive rats on the 7th day of ANG II infusion, it was six times higher than in control rats infused with dextrose. Changes of blood pressure and plasma ANG II concentration were compared in further rats infused with much larger doses of ANG II. Rats receiving 270 ng . kg-1 . min-1 for 1 h had an almost maximal direct pressor response, MAP rising 45.3 mmHg and plasma ANG II rising 32-fold compared with controls. Thus, infusion of ANG II at low dose without direct pressor effect gradually raises blood pressure to a level similar to the maximum direct pressor effect produced by larger doses of ANG II. Sodium balance and food and water intakes were also measured and did not change during prolonged infusion of ANG II at 20 ng . kg-1 . min-1. Thus, the slow pressure effect of ANG II develops at a lower and more nearly physiological plasma concentration of the peptide than do the direct pressor effect and the effects on drinking, eating, and urinary sodium excretion.


1995 ◽  
Vol 268 (3) ◽  
pp. R820-R823 ◽  
Author(s):  
S. D. Kivlighn ◽  
W. R. Huckle ◽  
G. J. Zingaro ◽  
R. A. Rivero ◽  
V. J. Lotti ◽  
...  

L-162,313 (5,7-dimethyl-2-ethyl-3-[[4-[2(n- butyloxycarbonylsulfonamido)-5-isobutyl-3-thienyl]phenyl]methyl]- imadazo[4,5-b]pyridine) is a nonpeptide that mimics the biological actions of angiotensin II (ANG II). The intravenous administration of L-162,313 increased blood pressure in the rat. The maximum increase in mean arterial pressure (MAP) was not different from the maximum response to ANG II in the same preparation. However, the duration of the pressor response after L-162,313 greatly exceeded that of ANG II. Pretreatment with ANG II receptor antagonists, L-158,809 (AT1 selective) or saralasin, blocked the L-162,313-induced increase in MAP. Enalaprilat, an angiotensin-converting enzyme inhibitor, failed to block the MAP response to L-162,313. In vitro, L-162,313-activated phosphoinositide turnover in rat aortic smooth muscle cell cultures was also blocked by L-158,809 and losartan (DuP-753). Therefore, L-162,313 is the first reported nonpeptide ANG II receptor agonist.


1985 ◽  
Vol 249 (1) ◽  
pp. E49-E55 ◽  
Author(s):  
R. P. Naden ◽  
S. Coultrup ◽  
B. S. Arant ◽  
C. R. Rosenfeld

Reduced vascular responsiveness to infused angiotensin II (ANG II) has been observed during pregnancy. It has been proposed that infusions produce lower circulating concentrations of ANG II in pregnancy, due to an increase in the metabolic clearance rate of ANG II (MCRangii). We have evaluated the MCRangii and the arterial plasma concentrations of ANG II during constant infusions of 1.15 micrograms ANG II/min into chronically instrumented pregnant (n = 6) and nonpregnant (n = 9) sheep. Although the pressor responses were significantly less in the pregnant than in the nonpregnant sheep (17.5 +/- 0.5 vs. 34.9 +/- 3.2 mmHg, P less than 0.001), the values for MCRangii were not different: 56.2 +/- 6.3 ml X min-1 X kg-1 in nonpregnant and 55.9 +/- 4.3 ml X min-1 X kg-1 in pregnant sheep. The steady-state plasma ANG II concentrations during the infusions were slightly less in pregnant than in nonpregnant sheep (388 +/- 36 vs. 454 +/- 36 pg/ml); however, this difference would be responsible for only a 2-mmHg reduction in the pressor response. We conclude that the reduced pressor response to infused ANG II in pregnancy is not due to an increase in MCRangii nor to lower plasma ANG II concentrations.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Michelle N Sullivan ◽  
Wencheng Li ◽  
Curt D Sigmund ◽  
Yumei Feng

The binding of prorenin to the (pro)renin receptor (PRR) induces non-proteolytic activation of prorenin and generation of angiotensin II (Ang II). PRR activation can also induce Ang II-independent signaling pathways. However, whether Ang II-independent signaling pathways are critical for blood pressure (BP) regulation is not known. To address this question, we created transgenic mice that overexpress the human PRR (hPRR) selectively in neurons (Syn-hPRR). Activated human prorenin (hPRO) cannot cleave endogenous mouse angiotensinogen to generate Ang II. Therefore, administration of hPRO to Syn-hPRR mice can be used to examine Ang II-independent PRR signaling in BP regulation. Intracerebroventricular (ICV) infusion of hPRO increases BP in Syn-hPRR mice (ΔMAP 23 ± 4.6, n = 4) but has no effect on wildtype (WT) mice (ΔMAP 2 ± 0.8, n = 6). The hPRO-induced pressor response in Syn-hPRR mice is unaffected by co-infusion with the Ang II type 1 receptor blocker losartan (ΔMAP 19 ± 5.2, n = 8), suggesting that the response is independent of Ang II. Interestingly, co-infusion with an inhibitor of the reactive oxygen species-generating enzyme NADPH oxidase (NOX), diphenyleneiodonium, nearly abolishes the hPRO-induced pressor response in Syn-hPRR mice (ΔMAP 4.7 ± 1.0, n = 4), indicating that NOX activity is required. Additionally, we find that basal NOX activity is enhanced in the Syn-hPRR hypothalamus relative to WT mice (1.4 fold change). We next examined which NOX isoform is responsible for the hPRO-induced pressor response and enhanced activity. NOX4 mRNA levels are greater (2.7 ± 0.6 fold change), but NOX1 (1.2 ± 0.3 fold change) and NOX2 (1.2 ± 0.3 fold change) mRNA levels are not different, in the hypothalamus of Syn-hPRR compared to WT mice (n = 3). Adenovirus-mediated delivery of NOX2, NOX4, or a scrambled sequence shRNA was ICV injected in Syn-hPRR mice. After 7 days, we found that treatment with NOX2 (ΔMAP 20 ± 5.2) or scrambled (ΔMAP 23 ± 3.2) shRNA had no effect on the hPRO-induced pressor response (n = 5). However, the hPRO-induced increase in BP is attenuated in Syn-hPRR mice injected with NOX4 shRNA (ΔMAP 5.9 ± 2.8). Together, these data indicate that NOX4 mediates the Ang II-independent pressor response to activation of the human (pro)renin receptor in Syn-hPRR mice.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Xiao C Li ◽  
Ana P Leite ◽  
Liang Zhang ◽  
Jia L Zhuo

The present study tested the hypothesis that intratubular angiotensin II (Ang II) and AT 1a receptors in the proximal tubules of the kidney plays an important role in basal blood pressure control and in the development of Ang II-induced hypertension. Mutant mice with proximal tubule-specific deletion of AT 1a receptors in the kidney, PT- Agtr1a -/- , were generated to test the hypothesis. Eight groups (n=7-12 per group) of adult male wild-type (WT) and PT- Agtr1a -/- mice were infused with or without Ang II for 2 weeks (1.5 mg/kg, i.p.). Basal systolic, diastolic, and mean arterial pressures were ~13 ± 3 mmHg lower in PT- Agtr1a -/- than WT mice ( P <0.01). Basal glomerular filtration rate (GFR), as measured using transdermal FITC-sinistrin, was significantly higher in PT- Agtr1a -/- mice (WT: 160.4 ± 7.0 μl/min vs. PT- Agtr1a -/- : 186.0 ± 6.0 μl/min, P <0.05). Basal 24 h urinary Na + excretion (U Na V) was significantly higher in PT- Agtr1a -/- than WT mice ( P <0.01). In response to Ang II infusion, both WT and PT- Agtr1a -/- mice developed hypertension, and the magnitude of the pressor response to Ang II was similar in WT (Δ43 ± 3 mmHg, P <0.01) and PT- Agtr1a -/- mice (Δ39 ± 5 mmHg, P <0.01). However, the absolute blood pressure level was still 16 ± 3 mmHg lower in PT- Agtr1a -/- mice ( P <0.01). Ang II significantly decreased GFR to 132.2 ± 7.0 μl/min in WT mice ( P <0.01), and to 129.4 ± 18.6 μl/min in PT- Agtr1a -/- mice ( P <0.01), respectively. In WT mice, U Na V increased from 139.3 ± 22.3 μmol/24 h in the control group to 196.4 ± 29.6 μmol/24 h in the Ang II-infused group ( P <0.01). In PT- Agtr1a -/- mice, U Na V increased from 172.0 ± 10.2 μmol/24 h in the control group to 264.7 ± 35.4 μmol/24 h in the Ang II-infused group ( P <0.01). The pressor response to Ang II was attenuated, while the natriuretic response was augmented by losartan in WT and PT- Agtr1a -/- mice ( P <0.01). Finally, proximal tubule-specific deletion of AT 1a receptors significantly augmented the pressure-natriuresis response and natriuretic responses to acute saline infusion ( P <0.01) or a 2% high salt diet ( P <0.01). We concluded that deletion of AT 1a receptors selectively in the proximal tubules lowers basal blood pressure and attenuates Ang II-induced hypertension by increasing GFR and promoting the natriuretic response in PT- Agtr1a -/- mice.


1991 ◽  
Vol 260 (6) ◽  
pp. R1200-R1209 ◽  
Author(s):  
D. L. Mattson ◽  
H. Raff ◽  
R. J. Roman

This study examined whether angiotensin II (ANG II) influences the pressure-natriuretic (PN) response by altering renal cortical or medullary hemodynamics. Studies were performed in Inactin-anesthetized rats that were acutely volume expanded to maintain plasma renin activity and ANG II levels in the physiological range. Neural influences on the kidney were eliminated by renal denervation, and plasma levels of norepinephrine, vasopressin, cortisol, and aldosterone were fixed by intravenous infusion. In control rats (n = 8), sodium excretion increased from 3 to 17 microeq.min-1.g kidney wt-1 as renal perfusion pressure (RPP) was elevated from 96 to 141 mmHg (n = 8). Captopril (2 mg/kg, n = 9) reduced plasma levels of ANG II from 48 +/- 5 to 18 +/- 2 pg/ml, but it did not alter the PN relationship. Infusion of ANG II (20 ng.kg-1.min-1, n = 9) increased plasma levels of ANG II to 232 +/- 42 pg/ml and shifted the PN relationship to the right by 14 mmHg. Captopril increased renal blood flow, and infusion of ANG II returned it to control. Captopril had no effect on glomerular filtration rate (GFR) or glomerular capillary pressure (Pglom); however, subsequent ANG II infusion decreased Pglom from 56 +/- 2 to 48 +/- 2 mmHg and reduced GFR by 30%. Neither captopril nor ANG II altered papillary bloodflow or vasa recta capillary pressure at normal levels of RPP. These results indicate that the shift of the PN relationship during infusion of ANG II is due to a decrease in filtered load and enhanced tubular reabsorption of sodium. Acute blockade of the renin-angiotensin system had little effect on the PN response in volume-expanded rats despite affecting renal hemodynamics, because either the plasma and/or intrarenal levels of ANG II were already suppressed below those needed to influence tubular function or volume expansion inhibits tubular reabsorption in the nephron segments normally influenced by ANG II.


1996 ◽  
Vol 270 (1) ◽  
pp. H167-H173 ◽  
Author(s):  
S. Lon ◽  
E. Szczepanska-Sadowska ◽  
M. Szczypaczewska

Five series of experiments were performed on conscious trained dogs to find out whether intracranially released arginine vasopressin (AVP) is involved in mediation of central cardiovascular effects of angiotensin II (ANG II). The dogs were implanted with guide tubes leading to the third cerebral ventricle (ICV) and implanted with the intra-arterial catheters. Blood pressure and heart rate were continuously monitored during intracerebroventricular administration of 1) ANG II alone (250 ng), 2) AVP alone (0.01 ng/min during 10 min), 3) ANG II together with AVP, 4) AVP together with AVP V1-receptor antagonist 1(1-mercapto-4-methylcyclohexaneacetic acid)-8-AVP [MeCAAVP, V1ANT,100 ng/min], and 5) ANG II together with V1ANT. The results revealed that 1) ANG II and AVP applied separately elicited significant, long-lasting increases of blood pressure; 2) the maximum pressor effect after ANG II and AVP applied together did not differ from that after separate application of either of these peptides, but the duration of the pressor response was significantly shorter; 3) pretreatment with V1ANT effectively prevented blood pressure increases elicited by central administration of AVP and ANG II; and 4) after blockade of V1 receptors administration of AVP resulted in a significantly delayed decrease of blood pressure below baseline. The results strongly suggest that 1) centrally released AVP mediates the pressor effect of intracerebroventricularly applied ANG II by means of V1 receptors; 2) intracerebroventricularly applied ANG II and AVP interact to activate the mechanism involved in extinction of their pressor effect; and 3) blockade of central V1 receptors uncovers the hypotensive action of centrally applied AVP.


1993 ◽  
Vol 265 (5) ◽  
pp. R1052-R1059
Author(s):  
L. R. Portis ◽  
S. J. Lewis ◽  
M. J. Brody

The present studies were undertaken to determine the role of rostral periaqueductal gray (PAG) in mediating the pressor effect produced by intracerebroventricular (icv) injection of angiotensin II (ANG II, 200 ng). Two functionally and anatomically distinct sites were identified in rostral PAG: a dorsomedial site involved in the hemodynamic responses produced by electrical stimulation of the anteroventral third ventricle (AV3V) region and a ventromedial site required for the pressor response elicited by icv administration of ANG II. In Saffan-anesthetized rats, injection of lidocaine (LIDO, 4%) in dorsomedial PAG, but not in ventromedial PAG, significantly attenuated the decrease in hindquarter resistance (HQR) produced by electrical stimulation of the AV3V region, and the poststimulatory increase in mean arterial pressure (MAP) and HQR. The injection of LIDO in ventromedial PAG had no effect on the hemodynamic responses produced by electrical stimulation of the AV3V region in anesthetized rats but significantly attenuated the pressor response produced by icv administration of ANG II in conscious rats. The hypothesis that these two sites receive separate projections was addressed by microinjecting two retrogradely transported fluorescent dyes, Fluoro-Gold and Fast Blue. The anatomic findings suggest that separation of the pathways activated by electrical and chemical stimulation of the AV3V region occurs at the level of rostral PAG.


Sign in / Sign up

Export Citation Format

Share Document