Endocrine control of the distribution of basic fibroblast growth factor, insulin-like growth factor-I and transforming growth factor-β1 mRNAs in adult rat adrenals using non-radioactive in situ hybridization

1995 ◽  
Vol 144 (2) ◽  
pp. 379-387 ◽  
Author(s):  
M M Ho ◽  
G P Vinson

Abstract This study located the particular cell types involved in the synthesis of growth factors in adult female rat adrenal glands. Non-isotopic in situ hybridization was used and the cellular localizations of the mRNAs of basic fibroblast growth factor (bFGF), IGF-I, and transforming growth factor-β1 (TGF-β1) were studied in adrenals from control animals and from those treated with ACTH or subjected to dietary sodium restriction. The adrenal medulla was the richest source of both bFGF and IGF-1 mRNA in both control and experimental rat adrenals. In the cortex, bFGF and IGF-I mRNAs were found mainly in the zona fasciculata in control animals, although some transcription was also detected in the zona reticularis and zona glomerulosa. Both ACTH and sodium restriction activated bFGF and IGF-I gene expression in the zona glomerulosa. Since cellular proliferation and differentiation occur primarily in the outer cortex, the data are consistent with the view that bFGF and IGF-I act as an autocrine/paracrine mitogen and differentiation regulator respectively in the rat adrenal cortex. Very small amounts of TGF-β1 mRNA were detected, predominantly in the zona fasciculata of control rats. There were no observable differences in amounts and localization of TGF-β1 mRNA between the adrenals of control rats and those treated with ACTH for 1 day. TGF-β1 mRNA was very weak or undetectable in the adrenals from rats treated with ACTH for three and five days or from sodium-restricted rats. Although TGF-β1 immunoreactive protein has been shown to be present in the zonae fasciculata and reticularis and to modulate negatively the steroidogenic activities in the adrenal cortex of other species, its gene is not actively expressed in rat adrenals. The present results showed that ACTH administration or dietary sodium restriction, both important adrenal mitogens in vivo, significantly altered the spatial patterns of the distribution of bFGF and IGF-I mRNAs and also increased the amount of bFGF mRNA in the adrenal cortex. This suggests that growth and differentiation of the adrenal cortex are partly mediated by bFGF and IGF-I. Journal of Endocrinology (1995) 144, 379–387

1993 ◽  
Vol 139 (2) ◽  
pp. 301-NP ◽  
Author(s):  
M. M. Ho ◽  
G. P. Vinson

ABSTRACT It is now known that in the rat there are two distinct species of cytochrome P45011β/18, namely aldosterone synthase and 11β-hydroxylase. Whereas aldosterone synthase is located exclusively in the zona glomerulosa, the zonal distribution and site of production of 11 β-hydroxylase is not entirely clear. In the present study we examined the zonal expression of 11β-hydroxylase mRNA in adrenals from control rats and animals subjected to ACTH treatment and dietary sodium restriction using a non-isotopic in-situ hybridization technique. The results were compared with those obtained using an inner zone specific antigenic (IZAg) marker to give unequivocal identification of the adrenocortical cell types. 11 β-Hydroxylase mRNA was clearly shown to be expressed in the inner zones of the control rat adrenal cortex, and none was detected in the zona glomerulosa and medulla. The message was more abundant in the outer zona fasciculata. A similar pattern of distribution of 11β-hydroxylase mRNA was observed in adrenals from rats subjected to dietary sodium restriction, although the width of the negatively staining layer of zona glomerulosa was significantly increased. In rats treated with 100 μg ACTH for 1 day, the number of cells expressing 11β-hydroxylase mRNA was increased, especially in the zona reticularis. With continued ACTH treatment, 11β-hydroxylase mRNA was found in the region of the zona glomerulosa, and after 3 and 5 days of ACTH treatment cells expressing 11β-hydroxylase mRNA extended to the connective tissue capsule. At this time there was a significant reduction in the total expression of the message compared with the controls. These results suggest that the presence of 11β-hydroxylase in the zona glomerulosa cells is not essential for the late pathway for aldosterone biosynthesis from deoxycorticosterone. Like IZAg, the distribution of 11β-hydroxylase mRNA after prolonged ACTH treatment provides further evidence to support the hypothesis that ACTH increases the conversion of zona glomerulosa to zona fasciculata-like cells. Journal of Endocrinology (1993) 139, 301–306


Endocrinology ◽  
2007 ◽  
Vol 148 (11) ◽  
pp. 5424-5432 ◽  
Author(s):  
J. T. Ross ◽  
I. C. McMillen ◽  
F. Lok ◽  
A. G. Thiel ◽  
J. A. Owens ◽  
...  

We investigated the effects of an intrafetal infusion of IGF-I on adrenal growth and expression of the adrenal steroidogenic and catecholamine-synthetic enzyme mRNAs in the sheep fetus during late gestation. Fetal sheep were infused for 10 d with either IGF-I (26 μg/kg·h; n = 14) or saline (n = 10) between 120 and 130 d gestation, and adrenal glands were collected for morphological analysis and determination of the mRNA expression of steroidogenic and catecholamine-synthetic enzymes. Fetal body weight was not altered by IGF-I infusion; however, adrenal weight was significantly increased by 145% after IGF-I infusion. The density of cell nuclei within the fetal adrenal cortex (the zona glomerulosa and zona fasciculata), and within the adrenaline synthesizing zone of the adrenal medulla, was significantly less in the IGF-I-infused fetuses compared with the saline-infused group. Thus, based on cell-density measurements, there was a significant increase in cell size in the zona glomerulosa and zona fasciculata of the adrenal cortex and in the adrenaline-synthesizing zone of the adrenal medulla. There was no effect of IGF-I infusion on the adrenal mRNA expression of the steroidogenic or catecholamine-synthetic enzymes or on fetal plasma cortisol concentrations. In summary, infusion of IGF-I in late gestation resulted in a marked hypertrophy of the steroidogenic and adrenaline-containing cells of the fetal adrenal in the absence of changes in the mRNA levels of adrenal steroidogenic or catecholamine-synthetic enzymes or in fetal plasma cortisol concentrations. Thus, IGF-I infusion results in a dissociation of adrenal growth and function during late gestation.


Endocrinology ◽  
1998 ◽  
Vol 139 (10) ◽  
pp. 4397-4403 ◽  
Author(s):  
Cheryl Wotus ◽  
Brett K. Levay-Young ◽  
Lisa M. Rogers ◽  
Celso E. Gomez-Sanchez ◽  
William C. Engeland

Abstract The adult rat adrenal cortex is comprised of three concentric steroidogenic zones that are morphologically and functionally distinguishable: the zona glomerulosa, zona intermedia, and the zona fasciculata/reticularis. Expression of the zone-specific steroidogenic enzymes, cytochrome P450 aldosterone synthase (P450aldo), and P450 11β hydroxylase (P45011β), produced by the zona glomerulosa and zona fasciculata/reticularis, respectively, can be used to define the adrenal cortical cell phenotype of these two zones. In this study, immunohistochemistry and in situ hybridization were used to determine the ontogeny of expression of P450aldo and P45011β to monitor the pattern of development of the rat adrenal cortex. RIA was used to measure adrenal content of aldosterone and corticosterone, the resulting products of the two enzymatic pathways. Double immunofluorescent staining for both enzymes at gestational day 16 (E16) showed P45011β protein expressed in cells distributed throughout most of the adrenal intermixed with a separate, but smaller, population of cells expressing P450aldo protein. Whereas expression of P45011β protein retained a similar pattern of distribution from E16 to adulthood (ignoring distribution of SA-1 positive, presumptive medullary cells), P450aldo protein changed its pattern of distribution by E19, becoming localized in a discontinuous ring of cells adjacent to the capsule. By postnatal day 1, P450aldo protein distribution was similar to that observed in adult glands; P450aldo-positive cells formed a continuous zone underlying the capsule. In situ hybridization showed that the pattern of P45011β messenger RNA expression paralleled protein expression at all times, whereas P450aldo messenger RNA paralleled protein at E19 and after, but was undetectable before E19. However, adrenal aldosterone and corticosterone, as measured by RIA, were detected by E16, supporting the functional capacity of both phenotypes for all ages studied. These data suggest that the development of the adrenal zona glomerulosa occurs in two distinct phases; initial expression of the glomerulosa phenotype in scattered cells of the inner cortex before E17, followed by a change in distribution to the outer cortex between E17 and E19. It is hypothesized that this change in distribution occurs via cell differentiation, rather than cell migration, and that a possible regulator of these events is the fetal renin-angiotensin system.


1974 ◽  
Vol 185 (1081) ◽  
pp. 375-407 ◽  

The densities of latex spheres and biological cells can be reliably determined from their sedimentation rate in an albumin gradient under unit gravitational force. The densities of zona glomerulosa and fasciculata cells of rat adrenals were found to be 1.072 ± 0.004 and 1.040 ± 0.001 respectively. Purified zona glomerulosa cells of rat adrenals can be prepared by gravitational sedimentation of dispersed cells from capsule strippings of the gland, which originally contain 3 to10% zona fasciculata contamination. Electron and phase microscopic examination of the sedimented glomerulosa cells and their steroidogenic response to ACTH and cyclic AMP indicate that they are reasonably free of contamination from zona fasciculata cells. Electron microscopic examination of the purified glomerulosa cells indicates that most of them are reasonably normal in structure. Their basal production of corticosterone is decreased after sedimentation. However, their maximal response of corticosterone output to serotonin and potassium and their response to all potassium concentrations is not significantly altered, indicating normal function for the cells producing steroids. Their maximal responses to ACTH, valine angiotensin II and cyclic AMP are decreased, but, at the doses used, steroidogenesis by the zona fasciculata contamination in the unfractionated preparation would be stimulated by these substances. Purified zona glomerulosa cells have about the same maximal response of corticosterone output (about twofold) to potassium, valine and isoleucine angiotensin II, serotonin and ACTH. The maximal response of the purified zona glomerulosa cells to cyclic AMP is similar to that elicited by valine and isoleucine angiotensin II, potassium, serotonin or ACTH. This indicates that if these stimuli act by increasing cyclic AMP output, then the maximal response of corticosterone output (about twofold) is defined by the limited response of the biosynthetic pathways to cyclic AMP.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Koshiro Nishimoto ◽  
Tsugio Seki ◽  
Yuichiro Hayashi ◽  
Shuji Mikami ◽  
Ghaith Al-Eyd ◽  
...  

Background. The immunohistochemical detection of aldosterone synthase (CYP11B2) and steroid 11β-hydroxylase (CYP11B1) has enabled the identification of aldosterone-producing cell clusters (APCCs) in the subcapsular portion of the human adult adrenal cortex. We hypothesized that adrenals have layered zonation in early postnatal stages and are remodeled to possess APCCs over time.Purposes. To investigate changes in human adrenocortical zonation with age.Methods. We retrospectively analyzed adrenal tissues prepared from 33 autopsied patients aged between 0 and 50 years. They were immunostained for CYP11B2 and CYP11B1. The percentage of APCC areas over the whole adrenal area (AA/WAA, %) and the number of APCCs (NOA, APCCs/mm2) were calculated by four examiners. Average values were used in statistical analyses.Results. Adrenals under 11 years old had layered zona glomerulosa (ZG) and zona fasciculata (ZF) without apparent APCCs. Some adrenals had an unstained (CYP11B2/CYP11B1-negative) layer between ZG and ZF, resembling the rat undifferentiated cell zone. Average AA/WAA and NOA correlated with age, suggesting that APCC development is associated with aging. Possible APCC-to-APA transitional lesions were incidentally identified in two adult adrenals.Conclusions. The adrenal cortex with layered zonation remodels to possess APCCs over time. APCC generation may be associated with hypertension in adults.


1988 ◽  
Vol 66 (8) ◽  
pp. 1113-1121 ◽  
Author(s):  
V. K. M. Han ◽  
A. J. D'Ercole ◽  
D. C. Lee

Transforming growth factors (TGFs) are polypeptides that are produced by transformed and tumour cells, and that can confer phenotypic properties associated with transformation on normal cells in culture. One of these growth-regulating molecules, transforming growth factor alpha (TGF-α), is a 50 amino acid polypeptide that is related to epidermal growth factor (EGF) and binds to the EGF receptor. Previous studies have shown that TGF-α is expressed during rodent embryogenesis between 7 and 14 days gestation. To investigate the cellular sites of TGF-α mRNA expression during development, we have performed Northern analyses and in situ hybridization histochemistry on the conceptus and maternal tissues at various gestational ages. Contrary to previous reports, both Northern analyses and in situ hybridization histochemistry indicate that TGF-α mRNA is predominantly expressed in the maternal decidua and not in the embryo. Decidual expression is induced following implantation, peaks at day 8, and declines through day 15 when the decidua is being resorbed. In situ hybridization revealed that expression of TGF-α mRNA is highest in the region of decidua adjacent to the embryo and is low or nondetectable in the uterus, placenta, and embryo. In addition, we could not detect TGF-α mRNA expression in other maternal tissues, indicating that the induction of TGF-α transcripts in the decidua is tissue specific, and not a pleiotropic response to changes in hormonal milieu that occur during pregnancy. The developmentally regulated expression of TGF-α mRNA in the decidua, together with the presence of EGF receptors in this tissue, suggests that this peptide may stimulate mitosis and angiogenesis locally by an autocrine mechanism. Because EGF receptors are also present in the embryo and placenta, TGF-α may act on these tissues by a paracrine or endocrine mechanism.


Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 1946-1955 ◽  
Author(s):  
RA Fava ◽  
TT Casey ◽  
J Wilcox ◽  
RW Pelton ◽  
HL Moses ◽  
...  

We have directly demonstrated that megakaryocytes are a major site of synthesis and storage of transforming growth factor-beta 1 (TGF/beta 1) by combined immunohistochemical, immunocytochemical, and in situ hybridization methods. The presence of TGF/beta 1 messenger RNA (mRNA) in mature megakaryocytes in adult rat spleen and bone marrow (BM) was established by in situ hybridization. Localization of TGF/beta 1 protein to intact alpha-granules of megakaryocytes, its putative storage site, was accomplished in glycol-methacrylate embedded porcine BM with an immunoperoxidase technique and light microscopy. The TGF/beta 1 was sequestered in intracytoplasmic granules in a pattern virtually identical to that of another alpha-granule marker protein, fibrinogen. This observation strongly suggests packaging of TGF/beta 1 into this organelle within megakaryocytes. That TGF/beta 1 mRNA was localized to megakaryocytes suggests that the TGF/beta 1 found in the alpha-granules in platelets originates with megakaryocyte synthesis. The alpha-granule localization of TGF/beta 1, as well as fibrinogen, was also demonstrated in isolated platelets at the ultrastructural level by electronmicroscopy (EM) and postembedding colloidal-gold immunocytochemistry, thus directly demonstrating that alpha-granules are the final storage site for TGF/beta 1 in mature platelets.


1996 ◽  
Vol 271 (3) ◽  
pp. F709-F716 ◽  
Author(s):  
D. Z. Wang ◽  
Q. Song ◽  
L. M. Chen ◽  
L. Chao ◽  
J. Chao

The tissue kallikrein-kinin system has been implicated in regulating blood pressure and electrolyte homeostasis. To understand the function of this system, we identified the expression and cellular localization of its components including tissue kallikrein, kallistatin, kininogen, and bradykinin B1 and B2 receptors in human adrenal gland. Reverse transcription-polymerase chain reaction followed by Southern blot analysis showed that these five components of this system were all expressed in human adrenal gland. In situ hybridization histochemistry with respective digoxigenin-labeled antisense riboprobes revealed localization of kallikrein transcript throughout the adrenal cortex and medulla except the zona glomerulosa, whereas kallistatin mRNA was only localized in the zona fasciculata. Low-molecular-weight kininogen and B2 receptor mRNAs were colocalized in the zona glomerulosa and zona fasciculata and also in the zona reticularis and chromaffin cells but to a lesser degree. The B1 receptor mRNA was stained in the zona fasciculata and medulla. These results show the expression and differential colocalization of the components of the tissue kallikrein-kinin system and reveal the potential action sites of this system in the adrenal gland.


Sign in / Sign up

Export Citation Format

Share Document