Stimulation of tyrosinase in human melanocytes by pro-opiomelanocortin-derived peptides

1995 ◽  
Vol 146 (3) ◽  
pp. 439-447 ◽  
Author(s):  
S D McLeod ◽  
C Smith ◽  
R S Mason

Abstract Human melanocytes, maintained on bovine corneal endothelium-derived extracellular matrix for at least 4 days in the absence of phorbol 12-myristate 13-acetate (PMA) and cholera toxin (CT), displayed increased tyrosinase activity when exposed to several pro-opiomelanocortinderived (POMC) peptides. Melanocytes from 9 of 14 donors showed significantly increased tyrosinase activity after treatment with adrenocorticotropic hormone (ACTH; mean increase 320±107 (s.e.m.)% of control, P<0·005), while melanocytes from 8 of 13 donors increased tyrosinase in the presence of diacetyl-melanocyte stimulating hormone (di-MSH; mean increase 223±31 (s.e.m.)% of control, P<0·005). Maximal increases in tyrosinase were seen after treatment with 10−10 m ACTH and with 10−6 m di-MSH. In two cell cultures which showed tyrosinase stimulation, melanin synthesis was similarly increased in the presence of added POMC peptides. PMA but not CT increased tyrosinase activity in melanocytes cultured under these conditions. In the presence of staurosporine, an inhibitor of protein kinase C (PKC), the magnitude of the increase in tyrosinase due to PMA, ACTH and di-MSH was significantly reduced. These results indicate that tyrosinase activity in melanocytes from most human donors, under appropriate conditions, is susceptible to the stimulatory effects of POMC peptides, that ACTH is considerably more potent than di-MSH in this test system and that in human cells the PKC pathway may be important in modulating melanogenesis. Journal of Endocrinology (1995) 146, 439–447

1993 ◽  
Vol 105 (4) ◽  
pp. 1079-1084 ◽  
Author(s):  
M. De Luca ◽  
W. Siegrist ◽  
S. Bondanza ◽  
M. Mathor ◽  
R. Cancedda ◽  
...  

The combined action of cholera toxin (CT)-dependent activation of the adenylate cyclase signaling pathway, stimulation of protein kinase C, and activation of the tyrosine kinase activity of cell surface receptors and proto-oncogene products, have been shown to stimulate melanocyte proliferation. However, natural factors responsible for the optimal stimulation of normal human melanocyte growth, either isolated or co-cultured with keratinocytes, remain largely unknown. alpha MSH (alpha melanocyte stimulating hormone) has previously been shown to bind to murine and human melanoma cells and to stimulate their adenylate cyclase and tyrosinase activity. In contrast, very little is known about the presence and function of alpha MSH receptors in normal human melanocytes. We now report that alpha MSH: (i) binds to normal human melanocytes through a single class of high-affinity receptors; (ii) does not induce per se melanocytes to enter the S-phase of the cell cycle; (iii) does indeed stimulate melanocyte proliferation in a dose-dependent fashion; but its stimulatory effect requires bFGF and/or the activation of protein kinase C.


1989 ◽  
Vol 92 (4) ◽  
pp. 551-559
Author(s):  
A. Slominski ◽  
G. Moellmann ◽  
E. Kuklinska

In Bomirski Ab amelanotic hamster melanoma cells, L-tyrosine and/or L-dopa induce increases in tyrosinase activity as well as synthesis of melanosomes and melanin. L-tyrosine also modifies melanocyte-stimulating hormone (MSH) binding. In this paper we show that in the Bomirski amelanotic melanoma system MSH and agents that raise intracellular cyclic AMP induce dendrite formation, inhibit cell growth, and cause substantial increases in tyrosinase activity without inducing melanin synthesis. Tyrosinase activity is detected only in broken cell preparations, or cytochemically in fixed cells. In the continued absence of mature melanosomes, the induced enzyme remains in elements of the trans-Golgi reticulum. Comparative measurements of cyclic AMP in amelanotic and tyrosine-induced melanotic cells show similar basal levels. L-tyrosine and L-dopa have little or no effect, whereas MSH may cause a 1000% peak increase in cyclic AMP levels both in amelanotic and melanotic cells. None of these agents influences cyclic GMP or inositol trisphosphate (InsP3) levels. In agreement with the InsP3 assays, phorbol ester (TPA) has no effect on melanization, tyrosinase activity or cell proliferation. In conclusion, in the Bomirski amelanotic melanoma, MSH induces only partial cell differentiation associated with raised levels of cyclic AMP. Induction of melanosome synthesis and melanization by L-tyrosine or L-dopa appear to follow pathways unrelated to cyclic AMP, cyclic GMP or InsP3.


1998 ◽  
Vol 9 (6) ◽  
pp. 1367-1378 ◽  
Author(s):  
Roser Buscà ◽  
Corine Bertolotto ◽  
Patricia Abbe ◽  
Walter Englaro ◽  
Toshimasa Ishizaki ◽  
...  

Up-regulation of the cAMP pathway by forskolin or α-melanocyte stimulating hormone induces melanocyte and melanoma cell differentiation characterized by stimulation of melanin synthesis and dendrite development. Here we show that forskolin-induced dendricity is associated to a disassembly of actin stress fibers. Since Rho controls actin organization, we studied the role of this guanosine triphosphate (GTP)-binding protein in cAMP-induced dendrite formation.Clostridium botulinum C3 exotransferase, which inhibits Rho, mimicked the effect of forskolin in promoting dendricity and stress fiber disruption, while the Escherichia colitoxin cytotoxic necrotizing factor-1 (CNF-1), which activates Rho and the expression of a constitutively active Rho mutant, blocked forskolin-induced dendrite outgrowth. In addition, overexpression of a constitutively active form of the Rho target p160 Rho-kinase (P160ROCK) prevented the dendritogenic effects of cAMP. Our results suggest that inhibition of Rho and of its target p160ROCK are required events for cAMP-induced dendrite outgrowth in B16 cells. Furthermore, we present evidence that Rho is involved in the regulation of melanogenesis. Indeed, Rho inactivation enhanced the cAMP stimulation of tyrosinase gene transcription and protein expression, while Rho constitutive activation impaired these cAMP-induced effects. This reveals that, in addition to controlling dendricity, Rho also participates in the regulation of melanin synthesis by cAMP.


Cosmetics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Shilpi Goenka ◽  
Sanford R. Simon

Curcumin, a bioactive from Curcuma longa, has been shown to possess anti-melanogenic activity previously; however, the effects of its hydrogenated metabolites (HMs)—Tetrahydrocurcumin (THC), Hexahydrocurcumin (HHC), and Octahydrocurcumin (OHC)—on melanogenesis have not been sufficiently explored. We have studied and compared three HMs (THC, HHC, and OHC) with the parent compound, curcumin (PC), on melanin synthesis in B16F10 mouse and MNT-1 human melanoma cells. Our results demonstrated that all the HMs were nontoxic over the concentration range 5–40 µM, while PC was nontoxic at 5 µM but induced toxicity at 20 and 40 µM in B16F10 cells. All three HMs enhanced melanin synthesis, while PC (5 µM) inhibited it. THC (40 µM) significantly stimulated melanin synthesis to a greater degree than HHC and OHC in both B16F10 and MNT-1 cells; the order of melanogenesis stimulation was THC = OHC > HHC in B16F10 mouse cells, while it was THC > HHC > OHC in MNT-1 cells. HMs stimulated melanogenesis by pathways not involving tyrosinase, as neither the intracellular tyrosinase activity nor the protein levels of tyrosinase were affected. In addition, mushroom tyrosinase activity, using L-Dihydroxyphenylalanine (L-DOPA) as the substrate, showed no direct effects of HMs. In summary, our results demonstrate that the HMs enhanced melanogenesis, which establishes that the hydrogenation of the heptadiene moiety of curcumin leads to a loss of its anti-melanogenic activity and instead results in the stimulation of melanogenesis. This stimulation is not further enhanced upon hydrogenation of the β-diketone, which was noted in MNT-1 cells, although the correlation to the number of keto groups differed in B16F10 cells where HHC was the weakest stimulator of melanogenesis. Collectively, THC with both keto groups intact is the best stimulator. Moreover, our results also validate that the electrophilicity of curcumin is necessary for its anti-melanogenic activity, as the non-electrophilic HMs did not inhibit melanogenesis. Furthermore, our results suggest that THC might hold promise as a stimulator of melanogenesis for treatment of hypopigmentation disorders and anti-graying therapies. Future studies to probe the molecular signaling mechanisms and test whether the pro-melanogenic activity of HMs is retained in primary human melanocytes are warranted.


1993 ◽  
Vol 106 (4) ◽  
pp. 1015-1022 ◽  
Author(s):  
E. Aberdam ◽  
C. Romero ◽  
J.P. Ortonne

The major stimulus for human melanin production is ultraviolet (UV) radiation. Little is known about the mechanisms underlying this response and the eventual enzyme regulation resulting from this activation. We treated normal human melanocytes in culture with daily UVB radiations. Cumulative increases in UVB doses resulted in proportional increases in tyrosinase activity over the first few days whereas an intermittent pattern of tyrosinase activation was observed after the fifth day of irradiation. This intermittent pattern consisted of latency periods where no melanogenic response was elicited despite exposure to UVB. Tyrosinase activity in cellular extracts increased shortly after an effective irradiation, peaked at 3 hours and thereafter decreased to below basal levels. Increased tyrosinase activity was associated with increased amounts of both the newly synthesized and mature forms of the enzyme. Decreased tyrosinase activity following an activation period was correlated with decreases in both the expression of tyrosinase mRNA and the amount of the newly synthesized form of the enzyme present in the melanocytes 24 hours after six irradiations. This particular pattern of stimulation of tyrosinase was not observed in S-91 murine melanoma cells after repeated UVB irradiations. Taken together these results may suggest a photo-protective mechanism developed by irradiated normal human melanocytes.


1994 ◽  
Vol 107 (1) ◽  
pp. 205-211 ◽  
Author(s):  
G. Hunt ◽  
C. Todd ◽  
J.E. Cresswell ◽  
A.J. Thody

Although melanocyte stimulating hormone (MSH) peptides are known to stimulate pigmentation in man, previous reports suggest that human melanocytes are relatively unresponsive to these peptides in vitro. This may be related to the conditions under which the melanocytes were cultured. Thus, we have re-investigated the in vitro effects of MSH peptides using human melanocytes cultured in the absence of artificial mitogens. Human melanocytes were incubated with alpha-MSH or its potent analogue Nle4Dphe7 alpha-MSH for 3 days. After 18 hours, melanocyte morphology had evolved from mainly bipolar to dendritic in approximately 66% of cultures. Nle4DPhe7 alpha-MSH produced dose-related increases in both tyrosinase activity and melanin content although the degree of response was variable and tyrosinase activity was the relatively more responsive to the peptide. Similar results were obtained with alpha-MSH, but, although the effect on melanin content was similar to that of Nle4DPhe7 alpha-MSH, the effect on tyrosinase activity was less marked. The preliminary EC50 values for the actions of the MSH peptides suggest that they may be equipotent in their actions on human melanocytes. In addition, we have demonstrated that the common melanocyte mitogens 12-O-tetradecanoyl phorbol-13-acetate (TPA) and cholera toxin affect basal melanogenesis and modulate the effects of the MSH peptides. However, not all melanocyte cultures showed melanogenic responses to the MSH peptides. Ability to respond was unrelated to basal levels of tyrosinase activity or melanin content. In at least some cultures, morphological and melanogenic responses appear to be independent of one another.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 111 (2) ◽  
pp. 225-232 ◽  
Author(s):  
S. A. Burchill ◽  
A. J. Thody

ABSTRACT Skin tyrosinase activity increases during hair growth in C3H–HeA*vy mice and reaches higher levels in young (30- to 35-day-old) mice when the hair follicular melanocytes synthesize the black pigment, eumelanin, than in older (6-month-old) mice when they produce the golden yellow pigment, phaeomelanin. To examine the regulation of the melanocytes at these different stages we have compared the effect of α-MSH and other agents that act, through cyclic AMP-dependent mechanisms, on skin tyrosinase activity in both young and old mice during hair growth, initiated by plucking. Daily administration of α-MSH, isoprenaline or theophylline increased coat darkness, and skin tyrosinase activity in the younger mice 7–9 days after plucking, but they were ineffective in the older mice. Similarly α-MSH, 8-bromo-cyclic AMP or theophylline increased tyrosinase activity in skin explants from the younger mice incubated for up to 24 h but had no effect in explants from older mice. Cyclic GMP had no effect on tyrosinase activity in skin explants from both young and old mice. It is suggested that whereas cyclic AMP-dependent mechanisms may operate to regulate tyrosinase activity in the hair follicular melanocytes of younger mice that produce eumelanin these systems may not operate in the older mice when these melanocytes synthesize phaeomelanin. Phaeomelanin synthesis, unlike that of eumelanin, may not depend upon tyrosinase and its regulation by cyclic AMP and this could explain the low levels of this enzyme in the skin and its failure to respond to α-MSH and other activators of the cyclic AMP system during periods of phaeomelanin production. J. Endocr. (1986) 111, 225–232


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2526
Author(s):  
Joong-Hyun Shim

This study was performed to clarify the inhibitory effects of cycloheterophyllin on melanin synthesis. In order to elucidate the inhibitory effects of cycloheterophyllin on the B16F10 cell line, cell viability, messenger ribonucleic acid (mRNA) expressions, tyrosinase activity assay, and melanin production assay were measured. The effects of cycloheterophyllin on tyrosinase-related protein 1 (TYRP1)/TYRP2/tyrosinase (TYR)/microphthalmia-associated transcription factor (MITF) mRNA expressions and melanin content were determined. Quantitative real-time RT-PCR showed that cycloheterophyllin decreased the mRNA expression level of TYRP1/TYRP2/TYR/MITF genes and melanin production contents than α-MSH-treated B16F10 cells. The tyrosinase activity assay revealed that cycloheterophyllin decreased the melanin production in the B16F10 cells. These data show that cycloheterophyllin increases the whitening effects in the B16F10 cells; thus, cycloheterophyllin is a potent ingredient for skin whitening. Thus, further research on the mechanism of action of cycloheterophyllin for the development of functional materials should be investigated.


Sign in / Sign up

Export Citation Format

Share Document