Adrenal and gonadal function in hypothyroid adult male rats

1997 ◽  
Vol 152 (1) ◽  
pp. 147-154 ◽  
Author(s):  
A Tohei ◽  
M Akai ◽  
T Tomabechi ◽  
M Mamada ◽  
K Taya

Abstract The functional relationship between thyroid, adrenal and gonadal hormones was investigated using adult male rats. Hypothyroidism was produced by the administration of 4-methyl-2-thiouracil (thiouracil) in the drinking water for 2 weeks. Plasma concentrations of TSH dramatically increased, whereas plasma concentrations of tri-iodothyronine and thyroxine decreased in thiouracil-treated rats as compared with euthyroid rats. Hypothyroidism increased basal levels of plasma ACTH and pituitary content of ACTH. The pituitary responsiveness to CRH for ACTH release markedly increased, whereas the adrenal responsiveness to ACTH for corticosterone release decreased. These results indicated that hypothyroidism causes adrenal dysfunction in adult male rats. Pituitary contents of LH and prolactin decreased in hypothyroid rats as compared with euthyroid rats. In addition, hypothyroidism lowered pituitary LH responsiveness to LHRH. Testicular responsiveness to human chorionic gonadotrophin for testosterone release, however, was not different between euthyroid and hypothyroid animals. These results indicated that hypothyroidism causes adrenal dysfunction and results in hypersecretion of ACTH from the pituitary gland. Adrenal dysfunction may contribute to the inhibition of LHRH secretion from the hypothalamus, possibly mediated by excess CRH. Journal of Endocrinology (1997) 152, 147–154

1985 ◽  
Vol 106 (1) ◽  
pp. 31-NP ◽  
Author(s):  
G. Watanabe ◽  
K. Taya ◽  
S. Sasamoto

ABSTRACT The present study was undertaken to determine whether hypothalamic differentiation is involved in the selective release of FSH during the periovulatory period using adult male rats castrated and implanted with an ovary. Adult male rats (70–90 days old) were castrated and an ovary obtained from a prepubertal female rat (26 days old) was immediately grafted subcutaneously. Four weeks later, human chorionic gonadotrophin (hCG, 10 i.u.) was injected i.v. into the experimentally manipulated rats to induce ovulatory changes in the grafted ovaries. Another group of similarly prepared rats was injected with 0·9% (w/v) NaCl solution as controls. After injection of hCG, plasma concentrations of FSH increased significantly by 6 h, reached peak values at 12 h and declined to control levels at 36 h. On the other hand, plasma concentrations of LH were reduced by 6 h and decreased further during the next 36 h. An abrupt fall in plasma concentrations of oestradiol-17β occurred within 3 h of the administration of hCG. Histological examination revealed that ovulatory changes and luteinization of follicles were induced in grafted ovaries by 18 h after the injection of hCG. Thirty-six hours after treatment with hCG, a set of newly formed corpora lutea was observed in grafted ovaries and plasma concentrations of progesterone were raised. Treatment with oestradiol-17β did not inhibit the selective release of FSH after the administration of hCG, suggesting that the abrupt decrease in secretion of oestradiol-17β from the grafted ovary is not involved in the occurrence of the FSH surge. These results indicate that a selective release of FSH can be induced in castrated male rats bearing an ovarian transplant probably due to decreased secretion of inhibin by the luteinized follicles in the grafted ovaries. Sex differentiation of the hypothalamus is not, therefore, involved in the selective surge of FSH. J. Endocr. (1985) 106, 31–36


1960 ◽  
Vol XXXIV (II) ◽  
pp. 176-188 ◽  
Author(s):  
A. Hasselblatt ◽  
Ch. Ratabongs

ABSTRACT The effect of pregnant mare serum gonadotrophin (PMS) and human chorionic gonadotrophin (HCG) on the thyroid gland of normal, of gonadectomized and of hypophysectomized infantile rats has been studied. Gonadotrophin treatment stimulated the thyroid of normal and hypophysectomized female rats. A corresponding effect was not observed in gonadectomized female or in normal and gonadectomized male rats. These results show that the gonadotrophic hormones stimulate thyroid function indirectly by increasing the hormonal secretion of the ovaries. An intimate functional relationship between the ovaries and the thyroid gland was thus demonstrated. As the stimulating effect of gonadotrophin treatment was also present in hypophysectomized female rats, it was concluded that the oestrogens act directly on the thyroid gland. Their thyrotrophic action is not mediated by the pituitary gland.


1973 ◽  
Vol 57 (2) ◽  
pp. 277-284 ◽  
Author(s):  
F. H. DE JONG ◽  
A. H. HEY ◽  
H. J. van der MOLEN

SUMMARY Concentrations of oestradiol-17β and testosterone were estimated in peripheral venous plasma and testicular venous plasma of adult male rats before and after administration of human chorionic gonadotrophin (HCG) or follicle-stimulating hormone (FSH). The concentration of oestradiol-17β in peripheral plasma, as measured with a radioimmunological technique, was 2·0 ± 0·9 (s.d.) pg/ml (n = 12). Peripheral testosterone concentrations were 2·4 ± 1·8 (s.d.) ng/ml (n = 21). Concentrations of oestradiol-17β and testosterone in testicular venous plasma were significantly higher than those in peripheral plasma. After intravenous administration of HCG (100 i.u.), oestradiol-17β and testosterone concentrations in testicular venous plasma increased significantly. After prolonged s.c. administration of HCG (5 days) the concentration of oestradiol-17β in testicular venous plasma did not change significantly, although the concentration of testosterone increased more than ten times. Intravenous administration of HCG after 5 days of pretreatment with HCG caused a significant increase in oestradiol-17β concentrations in testicular venous plasma. The increase in testosterone concentration was not significant under these conditions. Intravenous administration of FSH did not change oestradiol-17β or testosterone concentrations in testicular venous plasma.


2005 ◽  
Vol 153 (3) ◽  
pp. R7-R10 ◽  
Author(s):  
A P Silva ◽  
P Schoeffter ◽  
G Weckbecker ◽  
C Bruns ◽  
H A Schmid

Objective: Adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome is biochemically characterized by increased plasma concentrations of ACTH inducing hypersecretion of cortisol. Somatostatin is known to inhibit ACTH secretion, and in vitro data have shown the inhibition of ACTH secretion by agonists activating sst2 and sst5 receptors. The present study aimed to determine the inhibitory effect of the multireceptor ligand SOM230, compared with the sst2-preferring agonist octreotide, on corticotropin-releasing hormone (CRH)-stimulated secretion of ACTH and corticosterone in rats. Methods: Secretion of ACTH and corticosterone was induced by i.v. application of CRH (0.5 μg/kg) in rats pretreated 1 h before by i.v. application of SOM230 (1, 3, or 10 μg/kg), octreotide (10 μg/kg) or NaCl 0.9%. Results: SOM230 (3 and 10 μg/kg) inhibited CRH-induced ACTH release by 45±3% and 51±2%, respectively, and corticosterone release by 43±5% and 27±16%, respectively. 10 μg/kg of octreotide tended to be less potent at inhibiting ACTH release (34±6% inhibition) and did not alter the secretion of corticosterone. Conclusion: SOM230 has a stronger inhibitory effect on ACTH and corticosterone secretion than octreotide in rats. This difference can be explained by its higher affinity to sst1, sst3 and especially sst5 receptors compared with octreotide.


1974 ◽  
Vol 60 (3) ◽  
pp. 429-439 ◽  
Author(s):  
K. PURVIS ◽  
N. B. HAYNES

SUMMARY Peripheral plasma testosterone levels in the male rat were increased above control levels 5 min after the first intromission with an oestrous female, or 8–10 min after first contact with the female. The levels remained raised for at least 30 min if copulation was allowed to continue. Intravenous injection of human chorionic gonadotrophin resulted in an increased peripheral concentration of plasma testosterone after 10–15 min and an increase of testosterone content of the testis 5–10 min after injection, indicating that the rat testis has a potential to respond rapidly to gonadotrophin. The results suggested that if the testosterone surge during copulation was gonadotrophin-dependent, it was initiated before the first intromission. Indeed, plasma testosterone levels were raised in male rats 5 min after being placed in the proximity of oestrous females but not allowed physical contact.


1995 ◽  
Vol 146 (1) ◽  
pp. 169-176 ◽  
Author(s):  
H Kishi ◽  
K Taya ◽  
G Watanabe ◽  
S Sasamoto

Abstract Plasma and ovarian levels of inhibin were determined by a radioimmunoassay (RIA) at 3-h intervals throughout the 4-day oestrous cycle of hamsters. Plasma concentrations of FSH, LH, progesterone, testosterone and oestradiol-17β were also determined by RIAs. In addition, hamsters were injected at various times with human chorionic gonadotrophin (hCG) to determine the follicular development. The changes in plasma concentrations of FSH after injection of antisera to oestradiol-17β (oestradiol-AS) and inhibin (inhibin-AS) on the morning of day 2 (day 1=day of ovulation) were also determined. Plasma concentrations of inhibin showed a marked increase on the afternoon of day 1, remained at plateau levels until the morning of day 4, then increased abruptly on the afternoon of day 4 when preovulatory LH and FSH surges were initiated. A marked decrease in plasma concentrations of inhibin occurred during the process of ovulation after the preovulatory gonadotrophin surges. An inverse relationship between plasma levels of FSH and inhibin was observed when the secondary surge of FSH was in progress during the periovulatory period. Plasma concentrations of oestradiol-17β showed three increase phases and these changes differed from those of inhibin. Changes in plasma concentrations of oestradiol-17β correlated well with the maturation and regression of large antral follicles. Follicles capable of ovulating following hCG administration were first noted at 2300 h on day 1. The number of follicles capable of ovulating reached a maximum on the morning of day 3 (24·8± 0·6), and decreased by 0500 h on day 4 (15·0 ± 1·1), corresponding to the number of normal spontaneous ovulations. Plasma concentrations of FSH were dramatically increased within 6 h after inhibin-AS, though no increase in FSH levels was observed after oestradiol-AS. These findings suggest that changes in the plasma levels of inhibin during the oestrous cycle provide a precise indicator of follicular recruitment, and that the changes in plasma concentrations of oestradiol-17β are associated with follicular maturation. These findings also suggest that inhibin may play a major role in the inhibition of FSH secretion during the oestrous cycle of the hamster. Journal of Endocrinology (1995) 146, 169–176


1973 ◽  
Vol 72 (3) ◽  
pp. 615-624 ◽  
Author(s):  
W. Maurer ◽  
U. Volkwein ◽  
J. Tamm

ABSTRACT HCG was infused intravenously into normal male subjects. The doses administered were 500, 100 and 50 IU, respectively. During the initial phase of the infusions the plasma testosterone (T) levels decreased. Thirty minutes after starting the infusion of 500 and 100 IU HCG, respectively, the plasma testosterone increased. Significantly elevated values were observed 60 to 180 minutes after the cessation of HCG administration. The dihydrotestosterone (DHT) concentrations in the plasma showed a varying pattern. On the average this steroid also exhibited an increase in plasma following the HCG administration. From the results no conclusions can be drawn as to the extent to which the plasma concentrations of DHT have been influenced by a secretion from the testes or by a peripheral conversion of T into DHT.


1986 ◽  
Vol 111 (1) ◽  
pp. 75-82 ◽  
Author(s):  
J. Dohanics ◽  
G. Kapócs ◽  
T. Janáky ◽  
J. Z. Kiss ◽  
G. Rappay ◽  
...  

ABSTRACT The effects of lesions in the paraventricular nucleus (PVN) on the adrenocortical response to ether stress were investigated in neurohypophysectomized and intact rats. During the first 4 days after placement of lesions in the PVN, the corticosterone response to ether stress was almost completely inhibited. It then gradually increased and, within 4–6 weeks of surgery, was restored to about 60% of that in sham-operated rats. Basal plasma concentrations of corticosterone were low in rats after placement of lesions in the PVN and/or after neurointermediate lobectomy (NILX). Corticosterone responses to ether stress were similar in groups submitted to PVN lesions and/or NILX, and lower than those in the appropriate sham-operated groups. In all lesioned groups, plasma ACTH concentrations after a combination of stressors (ether plus laparotomy) were also lower than those in the sham-operated groups. Six weeks after lesioning of the PVN, immunoreactive rat corticotrophin-releasing factor-41 (rCRF-41) concentrations in stalk-median eminence (SME) extract fell to about 5% of that in sham-operated rats, while immunoreactive arginine vasopressin (AVP) concentrations did not change. Immunohistochemistry revealed a substantial decrease in rCRF-41 immunostaining of the median eminence 6 weeks after lesioning of the PVN, though randomly located clusters of stained terminals were still seen in the whole rostro-caudal extent of the median eminence. A mixture containing synthetic rCRF-41 and AVP, in proportions similar to those in SME extracts from sham-operated rats, caused significantly less release of ACTH from anterior pituitary cell cultures than did SME extracts from sham-operated rats. Extracts of SME from PVN-lesioned rats released as much ACTH as a mixture containing synthetic rCRF-41 and AVP in proportions similar to those in the SME extracts from PVN-lesioned rats. Extracts of SME from either PVN-lesioned or sham-operated rats did not cause a significant increase in the amount of ACTH released when preincubated with antisera to both rCRF-41 and AVP. It is suggested that (1) the restoration of the adrenocortical reponse to ether stress, evident within a few days of placement of lesions in the PVN, occurs independently of neurohypophysial function; (2) the full corticosterone and ACTH response to ether or ether plus laparotomy stress requires not only an intact PVN but also an intact neurointermediate lobe; (3) SME extracts from sham-operated rats contain a factor(s) with the ability to potentiate the ACTHreleasing effect of rCRF-41 and AVP; and (4) the ACTH-releasing activity of SME extract obtained from rats with long-term PVN lesions is probably due to its remaininJ content of rCRF-41 and AVP. J. Endocr. (1986) 111, 75–82


1988 ◽  
Vol 116 (1) ◽  
pp. 115-122 ◽  
Author(s):  
K. Taya ◽  
S. Sasamoto

ABSTRACT To determine whether failure of follicular maturation during the early stages of lactation in rats is due to inadequate LH stimulation, lactating rats nursing eight pups were injected twice daily for 1–3 days (days 2–5 of lactation) with various doses of ovine LH. Follicular maturation was determined by the ability of the follicles to ovulate in response to 10 IU human chorionic gonadotrophin (hCG), endogenous oestradiol-17β and inhibin production. Ovulation was not induced in control animals in response to 10 IU hCG given between days 2 and 5 of lactation. On the other hand, an injection of 10 IU hCG could induce ovulation in LH-treated animals, in which 25 and 50 μg LH per injection were given s.c. from days 2 to 5 of lactation. Concentrations of oestradiol-17β and inhibin activity in ovarian venous plasma increased progressively after the administration of LH, indicating that induced development of ovulatory follicles had occurred. Plasma concentrations of FSH declined in LH-treated animals compared with those in control animals. The decrease in plasma concentrations of FSH was not observed when lactating rats were ovariectomized before the first injection of LH, indicating that ovarian products, probably inhibin, from developing follicles may suppress the secretion of FSH from the pituitary gland. In both LH-treated and control animals, concentrations of prolactin and progesterone remained increased during the period of LH administration. The present results, therefore, suggest that the plasma levels of LH are an important determinant of follicular maturation during lactation in rats. J. Endocr. (1988) 116, 115–122


Sign in / Sign up

Export Citation Format

Share Document