Effect of GHRH and peptides from the vasoactive intestinal peptide family on cAMP production of human cancer cell lines in vitro

1999 ◽  
Vol 163 (2) ◽  
pp. 269-280 ◽  
Author(s):  
V Csernus ◽  
AV Schally ◽  
K Groot

Antagonistic analogs of GHRH inhibit growth of various human cancers both in vivo and in vitro. To elucidate the mechanism of direct action of the antagonistic analogs of GHRH on tumor cells, cultured human cancer cells were exposed to GHRH, vasoactive intestinal peptide (VIP), secretin, glucagon, neuropeptide-Y (NPY), pituitary adenylate cyclase-activating peptide (PACAP), and VIP analogs in a superfusion system, and changes in cAMP and IGF-II release from the cells were measured. Various human cancer cell lines, such as mammary (MDAMB-468 and ZR-75-1), prostatic (PC-3), pancreatic (SW-1990 and Capan-2), ovarian (OV-1063), and colorectal (LoVo) responded to pulsatile stimuli with GHRH (0.5-20 nM), VIP (0.02-10 nM), and PACAP-38 (0.05-5 nM) with a rapid, transient increase in cAMP release from the cells. The VIP antagonist, PG-97-269, and the adenylate cyclase inhibitor, MDL-12330A, but not SQ-22536 or pertussis toxin, blocked the cAMP responses to these peptides. Stimulation of the cells with 100 nM secretin, glucagon or NPY did not alter the cAMP release. Our results suggest that GHRH receptors different from the type expressed in the pituitary are involved in mediating these effects. As cAMP is a potent second messenger controlling a wide variety of intracellular functions, including those required for cell growth, our results indicate that GHRH might have a direct stimulatory effect on growth of human cancers. Blockade of the autocrine/paracrine action of GHRH with its antagonistic analogs may provide a new approach to tumor control.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3923
Author(s):  
Adel A.-H. Abdel-Rahman ◽  
Amira K. F. Shaban ◽  
Ibrahim F. Nassar ◽  
Dina S. EL-Kady ◽  
Nasser S. M. Ismail ◽  
...  

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-−C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.


Author(s):  
Suguru Fukahori ◽  
Hirohisa Yano ◽  
Jun Akiba ◽  
Sachiko Ogasawara ◽  
Seiya Momosaki ◽  
...  

2020 ◽  
Vol 19 (6) ◽  
pp. 790-799
Author(s):  
Miryam Chiara Malacarne ◽  
Stefano Banfi ◽  
Enrico Caruso

Two new aza-BODIPY photosensitizers featuring an iodine atom on each pyrrolic unit of their structure, were synthesized in fairly good yields and tested in vitro on two human cancer cell lines to assess their photodynamic efficacy.


Sign in / Sign up

Export Citation Format

Share Document