scholarly journals Orally administered, insulin-loaded amidated pectin hydrogel beads sustain plasma concentrations of insulin in streptozotocin-diabetic rats

2000 ◽  
Vol 164 (1) ◽  
pp. 1-6 ◽  
Author(s):  
CT Musabayane ◽  
O Munjeri ◽  
P Bwititi ◽  
EE Osim

We report successful oral administration of insulin entrapped in amidated pectin hydrogel beads in streptozotocin (STZ)-diabetic rats, with a concomitant reduction in plasma glucose concentration. The pectin-insulin (PI) beads were prepared by the gelation of humilin-pectin solutions in the presence of calcium. Separate groups of STZ-diabetic rats were orally administered two PI beads (30 micrograms insulin) once or twice daily or three beads (46 micrograms) once daily for 2 weeks. Control non-diabetic and STZ-diabetic rats were orally administered pectin hydrogel drug-free beads. By comparison with control non-diabetic rats, untreated STZ-diabetic rats exhibited significantly low plasma insulin concentration (0.32+/-0. 03 ng/ml, n=6, compared with 2.60+/-0.44 ng/ml in controls, n=6) and increased plasma glucose concentrations (25.84+/-1.44 mmol/l compared with 10.72+/- 0.52 mmol/l in controls). Administration of two PI beads twice daily (60 micrograms active insulin) or three beads (46 micrograms) once a day to STZ-diabetic rats increased plasma insulin concentrations (0.89+/-0.09 ng/ml and 1.85+/- 0.26 ng/ml, respectively), with a concomitant reduction in plasma glucose concentration (15.45+/-1.63 mmol/l and 10.56+/-0.26 mmol/l, respectively). However, a single dose of PI beads (30 micrograms) did not affect plasma insulin concentrations, although plasma glucose concentrations (17.82+/-2.98 mmol/l) were significantly reduced compared with those in untreated STZ-diabetic rats. Pharmacokinetic parameters in STZ-diabetic rats show that the orally administered PI beads (30 micrograms insulin) were more effective in sustaining plasma insulin concentrations than was s.c. insulin (30 micrograms). The data from this study suggest that this insulin-loaded amidated pectin hydrogel bead formulation not only produces sustained release of insulin, but may also reduce plasma glucose concentration in diabetes mellitus.

2011 ◽  
Vol 106 (S1) ◽  
pp. S101-S104 ◽  
Author(s):  
Adrian K. Hewson-Hughes ◽  
Matthew S. Gilham ◽  
Sarah Upton ◽  
Alison Colyer ◽  
Richard Butterwick ◽  
...  

Data from intravenous (i.v.) glucose tolerance tests suggest that glucose clearance from the blood is slower in cats than in dogs. Since different physiological pathways are activated following oral administration compared with i.v. administration, we investigated the profiles of plasma glucose and insulin in cats and dogs following ingestion of a test meal with or without glucose. Adult male and female cats and dogs were fed either a high-protein (HP) test meal (15 g/kg body weight; ten cats and eleven dogs) or a HP+glucose test meal (13 g/kg body-weight HP diet+2 g/kg body-weight d-glucose; seven cats and thirteen dogs) following a 24 h fast. Marked differences in plasma glucose and insulin profiles were observed in cats and dogs following ingestion of the glucose-loaded meal. In cats, mean plasma glucose concentration reached a peak at 120 min (10·2, 95 % CI 9·7, 10·8 mmol/l) and returned to baseline by 240 min, but no statistically significant change in plasma insulin concentration was observed. In dogs, mean plasma glucose concentration reached a peak at 60 min (6·3, 95 % CI 5·9, 6·7 mmol/l) and returned to baseline by 90 min, while plasma insulin concentration was significantly higher than pre-meal values from 30 to 120 min following the glucose-loaded meal. These results indicate that cats are not as efficient as dogs at rapidly decreasing high blood glucose levels and are consistent with a known metabolic adaptation of cats, namely a lack of glucokinase, which is important for both insulin secretion and glucose uptake from the blood.


2003 ◽  
Vol 95 (1) ◽  
pp. 330-335 ◽  
Author(s):  
Antony D. Karelis ◽  
François Péronnet ◽  
Phillip F. Gardiner

Glucose infusion attenuates fatigue in rat plantaris muscle stimulated in situ, and this is associated with a better maintenance of electrical properties of the fiber membrane (Karelis AD, Péronnet F, and Gardiner PF. Exp Physiol 87: 585–592, 2002). The purpose of the present study was to test the hypothesis that elevated plasma insulin concentration due to glucose infusion (∼900 pmol/l), rather than high plasma glucose concentration (∼10–11 mmol/l), could be responsible for this phenomenon, because insulin has been shown to stimulate the Na+-K+ pump. The plantaris muscle was indirectly stimulated (50 Hz, for 200 ms, 5 V, every 2.7 s) via the sciatic nerve to perform concentric contractions for 60 min, while insulin (8 mU · kg-1 · min-1: plasma insulin ∼900 pmol/l) and glucose were infused to maintain plasma glucose concentration between 4 and 6 [6.2 ± 0.4 mg · kg-1 · min-1: hyperinsulinemic-euglycemic (HE)] or 10 and 12 mmol/l [21.7 ± 1.1 mg · kg-1 · min-1: hyperinsulinemic-hyperglycemic clamps (HH)] (6 rats/group). The reduction in submaximal dynamic force was significantly ( P < 0.05) less with HH (-53%) than with HE and saline only (-66 and -70%, respectively). M-wave characteristics were also better maintained in the HH than in HE and control groups. These results demonstrate that the increase in insulin concentration is not responsible for the increase in muscle performance observed after the elevation of circulating glucose.


1979 ◽  
Vol 237 (3) ◽  
pp. E214 ◽  
Author(s):  
R A DeFronzo ◽  
J D Tobin ◽  
R Andres

Methods for the quantification of beta-cell sensitivity to glucose (hyperglycemic clamp technique) and of tissue sensitivity to insulin (euglycemic insulin clamp technique) are described. Hyperglycemic clamp technique. The plasma glucose concentration is acutely raised to 125 mg/dl above basal levels by a priming infusion of glucose. The desired hyperglycemic plateau is subsequently maintained by adjustment of a variable glucose infusion, based on the negative feedback principle. Because the plasma glucose concentration is held constant, the glucose infusion rate is an index of glucose metabolism. Under these conditions of constant hyperglycemia, the plasma insulin response is biphasic with an early burst of insulin release during the first 6 min followed by a gradually progressive increase in plasma insulin concentration. Euglycemic insulin clamp technique. The plasma insulin concentration is acutely raised and maintained at approximately 100 muU/ml by a prime-continuous infusion of insulin. The plasma glucose concentration is held constant at basal levels by a variable glucose infusion using the negative feedback principle. Under these steady-state conditions of euglycemia, the glucose infusion rate equals glucose uptake by all the tissues in the body and is therefore a measure of tissue sensitivity to exogenous insulin.


1971 ◽  
Vol 125 (2) ◽  
pp. 541-544 ◽  
Author(s):  
R. A. Hawkins ◽  
K. G. M. M. Alberti ◽  
C. R. S. Houghton ◽  
D. H. Williamson ◽  
H. A. Krebs

1. Sodium acetoacetate was infused into the inferior vena cava of fed rats, 48h-starved rats, and fed streptozotocin-diabetic rats treated with insulin. Arterial blood was obtained from a femoral artery catheter. 2. Acetoacetate infusion caused a fall in blood glucose concentration in fed rats from 6.16 to 5.11mm in 1h, whereas no change occurred in starved or fed–diabetic rats. 3. Plasma free fatty acids decreased within 10min, from 0.82 to 0.64mequiv./l in fed rats, 1.16 to 0.79mequiv./l in starved rats and 0.83 to 0.65mequiv./l in fed–diabetic rats. 4. At 10min the plasma concentration rose from 20 to 49.9μunits/ml in fed unanaesthetized rats and from 6.4 to 18.5μunits/ml in starved rats. There was no change in insulin concentration in the diabetic rats. 5. Nembutal-anaesthetized fed rats had a more marked increase in plasma insulin concentration, from 30 to 101μunits/ml within 10min. 6. A fall in blood glucose concentration in fed rats and a decrease in free fatty acids in both fed and starved rats is to be expected as a consequence of the increase in plasma insulin. 7. The fall in the concentration of free fatty acids in diabetic rats may be due to a direct effect of ketone bodies on adipose tissue. A similar effect on free fatty acids could also be operative in normal fed or starved rats.


2016 ◽  
Vol 11 (1) ◽  
pp. 200 ◽  
Author(s):  
Muhammad Kifayatullah ◽  
Pinaki Sengupta

<p class="Abstract">The purpose of this study was to evaluate the effects of <em>Pericampylus glaucus</em> extract on plasma glucose concentration and lipid profile in normal and streptozotocin-induced diabetic rats. The ethanolic extract were administered orally at three different doses (400, 600 and 800 mg/kg) and glibenclamide (20 mg/kg p.o.) for 21 days after 72 hours of streptozotocin injection. During the short- and long-term studies, the extract was found to possess significant (p&lt;0.01, p&lt;0.001) anti-diabetic activity in normal and diabetic rats compared with untreated normal and untreated diabetic group. It also caused reduction in the level of total cholesterol, triglyceride, and LDL etc. and improvement in the HDL level compared with untreated diabetic rats. Reduction in the fasting blood sugar, cholesterol, triglyceride, urea, LDL, creatinine levels and improvement in the HDL by<em> P. glaucus</em> indicates that plant has anti-diabetic activity along with anti hyperlipidemic efficacy and provides a scientific rationale for the use.</p><p> </p>


2000 ◽  
Vol 83 (6) ◽  
pp. 645-651 ◽  
Author(s):  
Jean-François Gabarrou ◽  
Pierre Andre Geraert ◽  
John Williams ◽  
Laurent Ruffier ◽  
Nicole Rideau

The plasma glucose–insulin relationships and thyroid status were investigated in two lines of adult cockerels divergently selected for high (R+) or low (R-) residual food consumption (RFC). For a given body weight, R+ birds had a 74 % higher food intake than R- birds. Plasma glucose concentrations were significantly lower in the R+ line compared with the R- when fasted, whereas R+ birds exhibited a significantly lower plasma insulin concentration than R- birds either in fed or fasted state. After an overnight fast, R+ birds also exhibited a higher sensitivity to exogenous insulin in view of its more pronounced hypoglycaemic effect. After an oral glucose load, the glucose disposal of R+ cockerels was faster despite lower glucose-induced plasma insulin concentration. Whilst plasma triacylglycerol concentrations were lower in the R+ line when fed, plasma non-esterified fatty acid concentrations were higher in fasted R+ than R- cockerels (684v.522 μmol/l). Higher plasma triiodothyronine concentrations were observed in fed R+ compared with R- birds (3·0v.2·1 nmol/l respectively). The higher plasma concentrations of triiodothyronine associated with lower concentrations of insulin could account for the leanness and the elevated diet-induced thermogenesis previously observed in the R+ line.


2011 ◽  
Vol 106 (S1) ◽  
pp. S105-S109 ◽  
Author(s):  
Adrian K. Hewson-Hughes ◽  
Matthew S. Gilham ◽  
Sarah Upton ◽  
Alison Colyer ◽  
Richard Butterwick ◽  
...  

A charge made against feeding dry foods to cats is that the high carbohydrate (i.e. starch) content results in high blood glucose levels which over time may have detrimental health effects. The present study determined the post-meal concentrations of plasma glucose and insulin in adult cats (seven males and four females) and dogs (Labrador retrievers; four males and five females) fed dry diets with low-starch (LS), moderate-starch (MS) or high-starch (HS) levels. In a cross-over design with at least 7 d between the test meals, plasma glucose and insulin concentrations were measured following a single meal of a LS, MS and HS diet (209 kJ/kg bodyweight). Only the HS diet resulted in significant post-meal increases in plasma glucose concentration in cats and dogs although the time-course profiles were different between the species. In cats, plasma glucose concentration was significantly increased above the pre-meal concentration from 11 h until 19 h after the meal, while in dogs, a significant increase above baseline was seen only at the 7 h time point. Plasma insulin was significantly elevated in dogs 4–8 h following the MS diet and 2–8 h after the HS diet. In cats, plasma insulin was significantly greater than baseline from 3–7 and 11–17 h after the HS diet. The time lag (approximately 11 h) between eating the HS diet and the subsequent prolonged elevation of plasma glucose concentration seen in cats may reflect metabolic adaptations that result in a slower digestive and absorptive capacity for complex carbohydrate.


1995 ◽  
Vol 82 (5) ◽  
pp. 1154-1159 ◽  
Author(s):  
Dounia Sbai ◽  
Philippe Jouvet ◽  
Anne Soulier ◽  
Luc Penicaud ◽  
Jacques Merckx ◽  
...  

Background It should be possible to avoid variations in plasma glucose concentration during anesthesia by adjusting glucose infusion rate to whole-body glucose uptake. To study this hypothesis, we measured glucose utilization and production, before and during halothane anesthesia. Methods After an overnight fast, six adolescents between 12 and 17 yr of age were infused with tracer doses of [6,6-2H2]glucose for 2 h before undergoing anesthesia, and the infusion was continued after induction, until the beginning of surgery. Plasma glucose concentration was monitored throughout, and free fatty acids, lactate, insulin, and glucagon concentrations were measured before and during anesthesia. Results Despite the use of a glucose-free maintenance solution, plasma glucose concentration increased slightly but significantly 5 min after induction (5.3 +/- 0.4 vs. 4.5 +/- 0.4 mmol.l-1, P &lt; 0.05). This early increase corresponded to a significant increase in endogenous glucose production over basal conditions (4.1 +/- 0.4 vs. 3.6 +/- 0.2 mg.kg-1.min-1, P &lt; 0.05), with no concomitant change in peripheral glucose utilization. Fifteen minutes after induction, both glucose utilization and production rates decreased steadily and were 20% less than basal values by 35 min after induction (2.9 +/- 0.3 vs. 3.6 +/- 0.2 mg.kg-1.min-1, P &lt; 0.05). Similarly, glucose metabolic clearance rate decreased by 25% after 35 min. Despite the increase in blood glucose concentration, anesthesia resulted in a significant decrease in plasma insulin concentration. Conclusions These data suggest that halothane anesthesia per se affects glucose metabolism. The decrease in peripheral glucose utilization and metabolic clearance rates and the blunted insulin release question the relevance of glucose infusion in these clinical settings.


Sign in / Sign up

Export Citation Format

Share Document