scholarly journals Corticotrophin-releasing hormone inhibits insulin-like growth factor-I release from primary cultures of rat granulosa cells

2002 ◽  
Vol 174 (3) ◽  
pp. 493-498 ◽  
Author(s):  
AE Calogero ◽  
A Barreca ◽  
N Burrello ◽  
I Palermo ◽  
G Giordano ◽  
...  

Corticotrophin-releasing hormone (CRH), a neuropeptide which modulates gonadal function during stress, is expressed by several cell types of the rat ovary and is able to suppress oestrogen release from rat granulosa cells. The mechanism of this effect is, however, not known. Since insulin-like growth factor (IGF)-I is produced by rat granulosa cells and exerts a synergistic role with FSH on granulosa cell steroidogenesis, we hypothesised that CRH may suppress oestrogen release from granulosa cells by inhibiting IGF-I release and/or stimulating the release of its binding protein (IGFBP-3). To test this hypothesis, granulosa cells were obtained from immature female Sprague-Dawley rats primed with diethylstilboestrol, and hormone concentrations were measured in the conditioned medium by radioimmunoassay. CRH suppressed oestrogen and IGF-I release stimulated by FSH used at a concentration of 1 IU/l, whereas it did not have any statistically significant effect on oestrogen and IGF-I release in basal conditions or in response to 5 IU/l FSH. The suppressive effects of CRH on oestrogen and IGF-I release were antagonised by a selective CRH receptor antagonist. CRH had no effects on IGFBP-3 release. CRH did not have any effect on oestrogen release stimulated by increasing concentrations of IGF-I and its suppressive effect on FSH-stimulated oestrogen release was overcome by the addition of low doses of exogenous IGF-I. In conclusion, CRH suppressed the release of oestrogen and IGF-I, but not of IGFBP-3. Thus, the inhibitory effects of CRH on oestrogen release could be mediated, partly, by a suppression of the autocrine/paracrine action of IGF-I.

2000 ◽  
Vol 85 (8) ◽  
pp. 2805-2809
Author(s):  
Laura Gianotti ◽  
Angela I. Pincelli ◽  
Massimo Scacchi ◽  
Mimma Rolla ◽  
Deanna Bellitti ◽  
...  

Exaggerated GH and reduced insulin-like growth factor I (IGF-I) levels are common features in anorexia nervosa (AN). A reduction of the negative IGF-I feedback could account, in part, for GH hypersecretion. To ascertain this, we studied the effects of recombinant human (rh)IGF-I on spontaneous and GH-releasing hormone (GHRH)-stimulated GH secretion in nine women with AN [body mass index, 14.1 ± 0.6 kg/m2] and in weight matched controls (normal weight). Mean basal GH concentrations (mGHc) and GHRH (2.0μ g/kg, iv) stimulation were significantly higher in AN. rhIGF-I administration (20 μg/kg, sc) significantly reduced mGHc in AN (P < 0.01), but not normal weight, and inhibited peak GH response to GHRH in both groups; mGHc and peak GH, however, persisted at a significantly higher level in AN. Insulin, glucose, and IGFBP-1 basal levels were similar in both groups. rhIGF-I inhibited insulin in AN, whereas glucose remained unaffected in both groups. IGFBP-1 increased in both groups (P < 0.05), with significantly higher levels in AN. IGFBP-3 was under basal conditions at a lower level in AN (P < 0.05) and remained unaffected by rhIGF-I. This study demonstrates that a low rhIGF-I dose inhibits, but does not normalize, spontaneous and GHRH-stimulated GH secretion in AN, pointing also to the existence of a defective hypothalamic control of GH release. Moreover, the increased IGFBP-1 levels might curtail the negative IGF-I feedback in AN.


1995 ◽  
Vol 268 (6) ◽  
pp. E1057-E1064
Author(s):  
S. E. Samaras ◽  
J. M. Hammond

Recombinant human insulin-like growth factor binding protein-3 (rhIGFBP-3) effects on basal, insulin-like growth factor I (IGF-I)-, and follicle-stimulating hormone (FSH)-stimulated progesterone (P4) secretion and [3H]aminoisobutyric acid (AIB) uptake by primary porcine granulosa cells (MDGs) and MDGs that have been passaged once (MDGp1) were assessed. Cells were treated concurrently or were preincubated with rhIGFBP-3 followed by treatment. rhIGFBP-3 had no effect on MDG or MDGp1 cell numbers after 24 h. Cotreatment with rhIGFBP-3 inhibited P4 secretion after treatment with FSH, IGF-I, and FSH plus IGF-I. FSH did not stimulate [3H]AIB uptake. However, the IGF-I-stimulated increase in [3H]AIB uptake was completely prevented by concurrent treatment with IGFBP-3. Preincubation of MDGp1 cells with IGFBP-3 dose dependently inhibited FSH- and IGF-I-stimulated P4 secretion. This inhibition was associated with increased cell association of the binding protein and increased IGF-I binding to the cells. These results indicate that IGFBP-3 is inhibitory to a variety of crucial functions in porcine granulosa cells, supporting a role for it in the regulation of granulosa cell function.


2020 ◽  
Vol 71 (1) ◽  
pp. 1977
Author(s):  
S. GULER ◽  
Β. ZIK

Capsaicin (trans-8-methyl-N-vanillyl-6-noneadamide) is a pungent ingredient in red peppers from the Capsicum family. Insulin-like growth factor-I (IGF-I) is expressed in granulosa cells and has an important role in ovarian development. However, there are no data about the IGF-I expression in ovarian granulosa cells after capsaicin treatment. The aim of this study was to investigate the expression of IGF-I and its receptor (insulin-like growth factor-I receptor [IGF-IR]) in primary rat ovarian granulosa cells after low and high doses of capsaicin treatment. For this, granulosa cells were isolated and cultured from ovaries of 30-day-old female Sprague-Dawley rats. Granulosa cell plates were divided into four groups as cell control (C), vehicle control (V), and 50 μM and 150 μM capsaicin groups. In experimental groups, granulosa cells were exposed to capsaicin for 24 hours and immunocytochemistry was performed afterwards using anti-IGF-I and anti-IGF-IR antibodies. Both IGF-I and IGF-IR expressions were found to be significantly increased in parallel to the capsaicin doses. Elevated levels of IGF-I may be a risk factor for ovarian development. Because of the crucial role of IGF-I in ovary development, capsaicin treatment can be effective on follicular development and/or disorders characterized by high IGF-I levels.


2006 ◽  
Vol 16 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Tiffany G. Harris ◽  
Howard D. Strickler ◽  
Herbert Yu ◽  
Michael N. Pollak ◽  
E. Scott Monrad ◽  
...  

1993 ◽  
Vol 136 (1) ◽  
pp. 91-104 ◽  
Author(s):  
L. R. Donahue ◽  
W. G. Beamer

ABSTRACT Although GH is known to regulate somatic growth during development, its role in regulating adult body composition is less well defined. The effects of GH on individual body compartments – water, fat, protein and mineral – are achieved both by the action of GH and by a GH-induced hormone, insulin-like growth factor-I (IGF-I). We used a genetic model of GH deficiency, the 'little' (gene symbol lit) mouse, to determine the GH regulation of IGF-I and its insulin-like growth factor-binding proteins (IGFBPs) and to define the interaction between these hormones and each body compartment in adults. Our results showed that GH-deficient lit/lit mice had reduced levels of serum IGF-I (range 38–130 μg/l) compared with normal lit/+ littermates (range 432–567 μg/l) between 2 and 52 weeks of age. The lit/lit mice did not experience the fivefold increase in IGF-I between 2 and 4 weeks of age that was seen in lit/+ mice. In lit/lit serum, overall binding of 125I-labelled IGF-I to the four IGFBPs was reduced, solely in response to a reduced amount of IGFBP-3. No overall differences were found between lit/lit and lit/+ mice in the binding of 125I-labelled IGF-I to IGFBP-2, -1 or -4. Age-related declines in IGF-I and IGFBPs were seen in lit/lit mice. However, adult levels of IGF-I were maintained in lit/+ mice to at least 52 weeks of age, as were levels of IGFBP-1 and -4, while IGFBP-3 and -2 declined with age. With respect to body composition, comparison of lit/lit with lit/+ mice showed that the lit/lit mice were characterized by abnormally large adipose tissue stores and reduced body water, protein and mineral from 2 weeks onward. These changes occurred despite normal energy intake in lit/lit mice up to 52 weeks of age, indicating that neither undernutrition nor hyperphagia is characteristic of this GH-induced model of obesity. Furthermore, lit/lit males accrued more body fat beginning at an earlier age than lit/lit females. With advancing age, the per cent body fat increased in both lit/lit and lit/+ mice, while the per cent body water and mineral declined. In lit/lit but not lit/+ mice, per cent protein also declined with age. The changes in body water and fat are attributable to lack of adequate GH in the genetically GH-deficient lit/lit mouse. On the other hand, the changes in body protein are more likely to be effects of IGF-I. Changes in mineral observed in lit/lit mice could be the result of action by GH, IGF-I or both hormones. Therefore, when GH is chronically manipulated by GH deficiency as in lit/lit mice, by GH excess as in acromegaly, or by GH therapy, all four body compartments are affected, suggesting that GH therapy is most valuable when the treatment goal is to alter overall body composition. Journal of Endocrinology (1993) 136, 91–104


2007 ◽  
Vol 92 (9) ◽  
pp. 3660-3666 ◽  
Author(s):  
Iona Cheng ◽  
Katherine DeLellis Henderson ◽  
Christopher A. Haiman ◽  
Laurence N. Kolonel ◽  
Brian E. Henderson ◽  
...  

1995 ◽  
Vol 268 (4) ◽  
pp. G631-G640 ◽  
Author(s):  
D. E. Winesett ◽  
M. H. Ulshen ◽  
E. C. Hoyt ◽  
N. K. Mohapatra ◽  
C. R. Fuller ◽  
...  

Insulin-like growth factor-I (IGF-I) may regulate small bowel growth. Analyses here in ad libitum-fed, fasted, and refed rats demonstrate that during fasting and refeeding changes in jejunal mass correlate with changes in serum IGF-I and jejunal IGF-I mRNAs. These data indicate that circulating and locally expressed IGF-I contribute to nutrient regulation of jejunal mass. During refeeding, jejunal IGF binding protein 3 (IGFBP-3) mRNA abundance was reduced relative to that of IGF-I, possibly amplifying enterotrophic actions of IGF-I. Localization of IGFBP-3 to subepithelial cells in lamina propria of jejunum indicates that IGFBP-3 derived from lamina propria may modulate IGF-I action on adjacent epithelium. Ileum differed from jejunum in that refeeding did not increase bowel mass or IGF-I mRNA to ad libitum values. Differences in exposure to luminal nutrient may underlie distinct responses of the two segments. Rats fed elemental diet intravenously showed reduced jejunal mass but not reduced jejunal IGF-I mRNA compared with rats fed oral elemental diet. Elemental nutrient given intravenously or orally therefore does not differ in effects on jejunal IGF-I expression. Complex luminal nutrient may, however, regulate jejunal IGF-I expression.


Author(s):  
Barbara H Mason ◽  
Michele A Tatnell ◽  
Ian M Holdaway

Measurement of insulin-like growth factor II (IGF-II) in human serum is complicated by the presence of IGF binding proteins and usually involves cumbersome extraction procedures followed by radioimmunoassay. We have utilized an extraction process developed for measuring insulin-like growth factor II in ovine serum using Sephacryl HR100, and have applied this to the extraction of human samples followed by radioimmunoassay for human IGF-II. The assay yielded 98% recovery of unlabelled IGF-II, parallelism between dilutions of eluate and the standard curve, complete removal of binding proteins and near-complete removal of IGF-I, and intra- and interassay coefficients of variation of 5% and 9%, respectively. The normal range for serum IGF-II in women was 490–1056 μg/L, and IGF-II levels were positively correlated with serum concentrations of insulin-like growth factor binding protein-3 (IGFBP-3) but not with IGF-I levels. Mean serum concentrations of IGF-II were reduced below normal in a number of hypopituitary patients and children with short stature and IGF-II concentrations in these subjects correlated positively with IGF-I and IGFBP-3. In acromegalic patients IGF-II levels were usually normal and were negatively correlated with IGF-I concentrations. From our experience with the above results the present assay appears particularly suitable for clinical measurements and research projects where high sample throughput is required.


Sign in / Sign up

Export Citation Format

Share Document