Pore water pressure and horizontal stress changes measured during construction of a contiguous bored pile multi-propped retaining wall in Lower Cretaceous clays

Géotechnique ◽  
2007 ◽  
Vol 57 (2) ◽  
pp. 197-205 ◽  
Author(s):  
D. J. Richards ◽  
W. Powrie ◽  
H. Roscoe ◽  
J. Clark
1992 ◽  
Vol 29 (1) ◽  
pp. 112-116
Author(s):  
K. D. Eigenbrod ◽  
J. P. Burak

Anchor forces, ground temperatures, and piezometric pressures were measured at a retaining wall in northwestern Ontario over a period of 2 years. The anchor forces were measured with strain gauges attached in pairs directly to the anchor rods. This method appeared practical in the field for time periods of less than 2 years as long as the strain gauges were carefully protected against moisture. The anchor forces increased from an average of 5 kN initially up to values of 50 kN during the winter periods and dropped during the summer periods back to the same values measured initially. The anchor forces were largely independent of pore-water pressure variations behind the wall. Rapid drawdown conditions, however, which were experienced during the second summer, were reflected in a load increase that was equivalent to the associated unloading effect in front of the wall. The pore-water pressures behind the wall were not noticeably affected by rapid drawdown, possibly due to the restraining effect of the anchors and the high rigidity of the low sheet pile wall. Ground temperatures at or below the groundwater table never dropped below 0 °C thus restricting the depth of frost penetration. Key words : anchor loads, freezing pressure, retaining walls, pore-water pressures, ground temperatures, field measurements.


Géotechnique ◽  
2019 ◽  
Vol 69 (5) ◽  
pp. 434-457 ◽  
Author(s):  
M. S. P. Wan ◽  
J. R. Standing ◽  
D. M. Potts ◽  
J. B. Burland

1996 ◽  
Vol 33 (2) ◽  
pp. 209-218 ◽  
Author(s):  
K D Eigenbrod ◽  
T Issigonis

During driving of steel piles through soft, sensitive clay into very dense sand and gravel, pore-water pressure responses were monitored. As a result of the large length of the piles and also because of the high sensitivity of the soft clays, the piles were driven in two stages. During the initial stage of driving in the soft clay, only very small pore-water pressure increases were recorded together with very low pile driving resistances; however, during the second stage of driving, high pore-water pressure increases were observed in the clay as soon as the piles penetrated into the underlying very dense sand and gravel. It was concluded that the clay deposit was loaded from below, as the piles were driven into very dense sand. The total stress changes and the resulting pore-water pressure changes in the clay were analyzed, assuming that the pile driving load was equivalent to a flexible load acting on the surface of an elastic half-space, which represents the soft clay deposit. This interpretation of the pore-water pressure increases is important for the assessment of the bearing capacity of engineering structures affected by piles driven through soft soils into very dense deposits. The potential for high pore-water pressure increases in the clay during undrained loading as well as for volume increases in the dense sand due to pile driving can be predicted from piezocone test data. Key words: pile driving, pore-water pressure, piezocone testing, soft sensitive clays, dense sand deposits.


Géotechnique ◽  
2019 ◽  
pp. 1-5 ◽  
Author(s):  
Michael S. P. Wan ◽  
Jamie R. Standing ◽  
David M. Potts ◽  
John B. Burland ◽  
Steve Parker ◽  
...  

Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2018 ◽  
Vol 35 (2) ◽  
pp. 111
Author(s):  
Kun ZHANG ◽  
Ze ZHANG ◽  
Xiangyang SHI ◽  
Sihai LI ◽  
Donghui XIAO

Sign in / Sign up

Export Citation Format

Share Document