COMPARATIVE ANALYSIS OF DATA FROM PUMPING TESTS IN AN UNCONFINED AQUIFER.

1967 ◽  
Vol 38 (2) ◽  
pp. 267-284
Author(s):  
E W BRAND
1968 ◽  
Vol 40 (3) ◽  
pp. 383-392
Author(s):  
E W BRAND ◽  
P JOHNSON ◽  
J F PECK ◽  
R F STONER ◽  
N S BOULTON ◽  
...  

2003 ◽  
Vol 40 (6) ◽  
pp. 1093-1103 ◽  
Author(s):  
Robert P Chapuis ◽  
Djaouida Chenaf

This paper establishes how the water stored in the pipes of monitoring and pumping wells influences the drawdown curves of pumping tests in confined aquifers. Experimental and numerical results obtained with a physical model are first studied and then confirmed by field-test data. A large tank was used for fully controlled pumping tests. It contains a lower confined aquifer, an aquitard, and an upper unconfined aquifer. Pumping tests at a constant flow rate in the confined aquifer provided drawdowns that were analyzed for unsteady-state, steady-state, and recovery conditions. For a single monitoring well, the different interpretation methods provided similar values of transmissivity, T, and storativity, S. Drawdown curves gave much too high S values. These S values were equal to those resulting from water storage in the pipes of monitoring and pumping wells, according to the physical definition of storativity. The experimental T and S values were confirmed by two numerical analyses (finite elements) of the pumping test, one considering no water was stored in the pipes and the other considering stored water. Data of real pumping tests in confined aquifers confirmed that the S value calculated from drawdown curves can be influenced by water storage in monitoring and pumping wells for usual pipe diameters.Key words: pumping test, transmissivity, storativity, sandbox, in situ test, pipe capacity.


2015 ◽  
Vol 531 ◽  
pp. 2-16 ◽  
Author(s):  
Avinoam Rabinovich ◽  
Warren Barrash ◽  
Michael Cardiff ◽  
David L. Hochstetler ◽  
Tania Bakhos ◽  
...  

Author(s):  
Luca Vettorello ◽  
Andrea Sottani

A new pumping station was designed in the northern high plain of the province of Padua (Veneto region, north-eastern Italy), aiming to reach an overall abstraction rate of about 2 m3/s, in order to relevantly contribute to the regional drinking water supply. Local unconfined aquifer is a highly permeable alluvial system, hydraulically connected to the Brenta river, one of the most important groundwater recharging sources of the entire hydrogeological basin, and the Camazzole lake, a former open-pit mine. This lake deepens below the water table and is directly connected to the surrounding phreatic aquifer and indirectly to the river, forming a 3-element hydraulic equilibrium. In order to evaluate the sustainability of the groundwater exploitation, this case study required an in-depth analysis of the hydrogeological resource, focusing on the estimation of hydraulic conductivity values and distribution. A numerical simulation was needed since the first step of the study, to plan the following field activities and provide a rough representation of the expectable drawdown in the pumped aquifer, even if the initial model had a very high level of uncertainty. Before the pumping tests no experimental data were available, so a homogeneous distribution of hydraulic conductivity was preliminarily assigned to the entire mesh, referring to a single bibliographic value available for the aquifer. After the analytical interpretation of pumping tests, different punctual values of hydraulic conductivity were estimated, but the parameter field was still very difficult to define, due to the complexity of the hydrogeological context and the non-uniqueness of the possible spatial interpolations. The availability of groundwater level observations at a larger scale allowed to calculate a set of hydraulic conductivity fields through the pilot points method, integrating the pumping tests results and extending aquifer characterization to a wider domain. The numerical model was finally calibrated with groundwater temperature monitored trends, reproducing the interaction between the lake and the phreatic aquifer through a heat transport simulation. The resulting hydraulic conductivity distribution has been considerably refined, especially at the interface between the lake and the aquifer, and the parameterization has been further validated using heat as a groundwater tracer.


2012 ◽  
Vol 24 (4) ◽  
pp. 605-608 ◽  
Author(s):  
Hui Huang ◽  
Jia-zhong Qian ◽  
Xing-xing Kuang ◽  
Zhou Chen ◽  
Ru-zhong Li

Author(s):  
C. Lu ◽  
Y. Zhang ◽  
L. Shu ◽  
X. Chen ◽  
S. Chen ◽  
...  

Abstract. The paper aims to evaluate the impacts of the average hydraulic conductivity of the heterogeneous aquifer on the estimated hydraulic conductivity using the observations from pumping tests. The results of aquifer tests conducted at a karst aquifer are first introduced. A MODFLOW groundwater flow model was developed to perform numerical pumping tests, and the heterogeneous hydraulic conductivity (K) field was generated using the Monte Carlo method. The K was estimated by the Theis solution for an unconfined aquifer. The effective hydraulic conductivity (Ke) was calculated to represent the hydraulic conductivity of a heterogeneous aquifer. The results of numerical simulations demonstrate that Ke increase with the mean of hydraulic conductivity (EK), and decrease with the coefficient of variation of the hydraulic conductivity (Cv). The impact of spatial variability of K on the estimated Ke at two observation wells with smaller EK is less significant compared to the cases with larger EK.


Sign in / Sign up

Export Citation Format

Share Document