THE STABILITY OF THE COMPRESSION-FLANGES OF THROUGH-BRIDGE PLATE-GIRDERS. (INCLUDES PLATES).

1936 ◽  
Vol 2 (5) ◽  
pp. 322-355
Author(s):  
A N PROCTER
Neutron ◽  
2020 ◽  
Vol 20 (01) ◽  
pp. 16-32
Author(s):  
Donald Essen ◽  
Nurul Musyafa Ulul Hidayah

This study aims to the structural design of non-composite plate girders using AASHTO LRFD Bridge Design Specifications 2017 code compared to SNI 1729:2015 code. The span of the bridge used as the object of study is 40 meters with a width of 10 meters. In this study, plate girders are designed based on AASHTO code and SNI code, then also given the loading according to SNI 1725:2016 code, and in the analysis of the structure using CSi Bridge software to get the value of internal forces i.e. Moment Force (Mu) of 3595.38 kNm and Shear Force (Vu) of 449.9968 kNm. The results obtained from this study are the non-composite bridge plate girder designed with AASHTO LRFD Bridge Design Specifications 2017 and SNI 1729:2015 obtained the stability requirements of strong boundary conditions flexure design. Then obtained Nominal Moment value (ØMn) of 8016.843 kNm for AASHTO LRFD Bridge Design Specifications 2017 and Nominal Moment value (ØMn) of 6081.97 kNm for SNI 1729:2015. From the values obtained it can be concluded that the two regulations produce a safe and strong plan as per the applicable provisions namely Moment (Mu <ØMn).


1. The investigation relates to flat elastic strip, of uniform breadth, thickness and material, upon which a uniform shear is imposed by tangential tractions applied at its edges and in its plane. The tractions appear in the expression for the change of potential energy which occurs when the strip is bent, and they must therefore affect both the modes and the frequencies of its free transverse vibrations. If sufficiently intense, they will bring about a condition of limiting elastic stability, since they can neutralize, in certain types of distortion, the restoring effects of the flexural stresses. The results have some bearing on the stability of the webs of deep plate girders, which take the greater part of the total shear transmitted. The correspondence must not, however, be pressed unduly, because in a girder uniform shear will be accompanied by a varying bending moment which imposes additional stresses upon the web. It is more accurate to describe the sheared strip (of which the length, in this paper, has been assumed to be infinite) as the limiting case either of a narrow annular disc, or of a short tube, subjected to torsion. The similarity of the three problems is illustrated by the specimens shown in fig. 1, which have buckled under conditions of limiting elastic stability.


2015 ◽  
Vol 37 (3) ◽  
pp. 53-61 ◽  
Author(s):  
Mieszko Kużawa ◽  
Jan Bień

Abstract Comprehensive methodology of numerical nonlinear analysis of the consecutive phases in the structural behaviour of bridge plate girders with deformations is presented. The analysis concerns all stages of structure loading until failure and especially determination of the ultimate shear load capacity. Verification and validation of the numerical procedures proposed is based on comparison of the calculated results with effects of experimental laboratory shear capacity tests of plate girders carried out at the University of Ljubljana.


1982 ◽  
Vol 99 ◽  
pp. 605-613
Author(s):  
P. S. Conti

Conti: One of the main conclusions of the Wolf-Rayet symposium in Buenos Aires was that Wolf-Rayet stars are evolutionary products of massive objects. Some questions:–Do hot helium-rich stars, that are not Wolf-Rayet stars, exist?–What about the stability of helium rich stars of large mass? We know a helium rich star of ∼40 MO. Has the stability something to do with the wind?–Ring nebulae and bubbles : this seems to be a much more common phenomenon than we thought of some years age.–What is the origin of the subtypes? This is important to find a possible matching of scenarios to subtypes.


1999 ◽  
Vol 173 ◽  
pp. 309-314 ◽  
Author(s):  
T. Fukushima

AbstractBy using the stability condition and general formulas developed by Fukushima (1998 = Paper I) we discovered that, just as in the case of the explicit symmetric multistep methods (Quinlan and Tremaine, 1990), when integrating orbital motions of celestial bodies, the implicit symmetric multistep methods used in the predictor-corrector manner lead to integration errors in position which grow linearly with the integration time if the stepsizes adopted are sufficiently small and if the number of corrections is sufficiently large, say two or three. We confirmed also that the symmetric methods (explicit or implicit) would produce the stepsize-dependent instabilities/resonances, which was discovered by A. Toomre in 1991 and confirmed by G.D. Quinlan for some high order explicit methods. Although the implicit methods require twice or more computational time for the same stepsize than the explicit symmetric ones do, they seem to be preferable since they reduce these undesirable features significantly.


Sign in / Sign up

Export Citation Format

Share Document