scholarly journals COMPARATIVE ANALYSIS OF PLATE GIRDER DESIGNS ON NON-COMPOSITE BRIDGES BETWEEN AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS 2017 CODE WITH SNI 1729:2015 CODE

Neutron ◽  
2020 ◽  
Vol 20 (01) ◽  
pp. 16-32
Author(s):  
Donald Essen ◽  
Nurul Musyafa Ulul Hidayah

This study aims to the structural design of non-composite plate girders using AASHTO LRFD Bridge Design Specifications 2017 code compared to SNI 1729:2015 code. The span of the bridge used as the object of study is 40 meters with a width of 10 meters. In this study, plate girders are designed based on AASHTO code and SNI code, then also given the loading according to SNI 1725:2016 code, and in the analysis of the structure using CSi Bridge software to get the value of internal forces i.e. Moment Force (Mu) of 3595.38 kNm and Shear Force (Vu) of 449.9968 kNm. The results obtained from this study are the non-composite bridge plate girder designed with AASHTO LRFD Bridge Design Specifications 2017 and SNI 1729:2015 obtained the stability requirements of strong boundary conditions flexure design. Then obtained Nominal Moment value (ØMn) of 8016.843 kNm for AASHTO LRFD Bridge Design Specifications 2017 and Nominal Moment value (ØMn) of 6081.97 kNm for SNI 1729:2015. From the values obtained it can be concluded that the two regulations produce a safe and strong plan as per the applicable provisions namely Moment (Mu <ØMn).

2006 ◽  
Vol 33 (4) ◽  
pp. 471-488 ◽  
Author(s):  
A Ghani Razaqpur ◽  
Afshin Esfandiari

The effect of loading and geometric parameters on the transverse and longitudinal redistribution of moments in continuous composite bridges, comprising a concrete slab on parallel steel girders, is investigated with the nonlinear finite element method. Fifty bridges are analyzed over their entire range of loading up to failure, and their moment redistribution factors are determined and compared with the relevant predictions of the Canadian Highway Bridge Design Code (CHBDC) and the AASHTO LRFD Bridge Design Specifications. The parameters studied included truck position along the bridge, number of loaded lanes, bridge width, number of girders, slab thickness, degree of composite action, and presence of diaphragms. The study reveals that among the preceding parameters only the number of loaded lanes and the bridge width significantly affect transverse redistribution of moments at ultimate limit state (ULS). However, most of the preceding parameters affect longitudinal redistribution at ULS. Finally, it is demonstrated that plastic analysis of composite multi-girder continuous bridges, treated as an equivalent beam, provides a reasonable estimate of their longitudinal moment redistribution capacity at ULS. It is demonstrated that the actual load-carrying capacity of a composite bridge may be more than 50% higher than that predicted by the CHBDC or AASHTO code. Such higher predicted capacity may obviate the need for retrofit in some cases.Key words: analysis, bridge, composite, concrete, distribution, finite element, inelastic, load, steel.


2003 ◽  
Vol 1845 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Robert W. Barnes ◽  
J. Michael Stallings ◽  
Paul W. Porter

Results are reported from live-load tests performed on Alabama’s high-performance concrete (HPC) showcase bridge. Load distribution factors, deflections, and stresses measured during the tests are compared with values calculated using the provisions of the AASHTO LRFD Bridge Design Specifications and AASHTO Standard Specifications for Highway Bridges. Measured dynamic amplification of load effects was approximately equal to or less than predicted by both specifications. Distribution factors from both specifications were found to be conservative. Deflections computed according to AASHTO LRFD Bridge Design Specifications suggestions matched best with the measured deflections — overestimating the maximum deflections by 20% or less. Bottom flange stresses computed with AASHTO distribution factors were significantly larger than measured values. AASHTO LRFD Bridge Design Specifications provisions suggest a special procedure for computing exterior girder distribution factors in bridges with diaphragms. When two or more lanes were loaded, this special procedure did not reflect the actual behavior of the bridge and resulted in very conservative distribution factors for exterior girders. Further research is recommended to correct this deficiency.


2020 ◽  
Author(s):  
Robert J. Connor ◽  
Cem Korkmaz

In current bridge design specifications and evaluation manuals from the American Association of State Highway and Transportation Officials (AASHTO LRFD) (AASHTO, 2018), the detail category for base metal at the toe of transverse stiffener-to-flange fillet welds and transverse stiffener-to-web fillet welds to the direction of the web and hence, the primary stress) is Category C′. In skewed bridges or various other applications, there is sometimes a need to place the stiffener or a connection plate at an angle that is not at 90 degrees to the web. As the plate is rotated away from being 90 degrees to the web, the effective “length” of the stiffener in the longitudinal direction increases. However, AASHTO is currently silent on how to address the possible effects on fatigue performance for other angles in between these two extremes. This report summarizes an FEA study that was conducted in order to investigate and determine the fatigue category for welded attachments that are placed at angles other than 0 or 90 degrees for various stiffener geometries and thicknesses. Recommendations on how to incorporate the results into the AASHTO LRFD Bridge Design Specifications are included in this report.


Author(s):  
Donald Essen ◽  
Ryza Nur Rohman

In the world of construction there are various methods and types of materials used to support the passage of a construction work. One of them is composite girder plate. Composite girder plate is one of the many construction methods that combine two construction materials that are physically different in nature, namely concrete with steel. This type of composite girder plate construction is commonly used for bridge construction work with a fairly large span and width. In its use, of course, it must be preceded by stages of careful planning on a standard and valid basis as well. In the following research will discuss and look for similarities and differences regarding the two types of rules in the planning of composite girder plates, namely the rules of planning composite girder plates using AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS 2017 with SNI 1729: 2015. After doing the initial stages of modeling using CSI Bridge software using the profile cross section constraints of the AASHTO provisions, the internal force obtained is Moment Force (Mu) of 3469.13 kNm and Shear Force (Vu) of 225.98 kNm. Then proceed with the analysis of calculations with the help of Microsoft Excel software namely calculating using the AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS 2017 regulations for stability requirements of strong boundary conditions on the bending requirements. Then a Nominal Moment (ØMn) value of 6420.19 kNm is obtained. Then proceed to calculate the same planning constraints, but this time using SNI 1729: 2015 regulations. Obtained Nominal Moment Value (ØMn) of 6579.88 kNm. Then it can be concluded that the two regulations produce a safe and strong planning, of course in accordance with applicable regulations namely: Moment (Mu <ØMn).


2021 ◽  
Author(s):  
Jeffrey Newman ◽  
Kevin Johns ◽  
Thomas Murphy ◽  
Maria Lopez ◽  
Zolan Prucz ◽  
...  

2019 ◽  
Author(s):  
Jorge G. Zornberg ◽  
Amr M. Morsy ◽  
Behdad Mofarraj Kouchaki ◽  
Barry Christopher ◽  
Dov Leshchinsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document