Development of antibacterial medical textile materials applied with aromatic oil

2021 ◽  
Vol 10 (2) ◽  
pp. 1-7
Author(s):  
Ahmet Koyutürk ◽  
Devrim Demiray Soyaslan
2021 ◽  
Vol 69 (2) ◽  
pp. 21-29
Author(s):  
Silvana Zhezhova ◽  
Sonja Jordeva ◽  
Sashka Golomeova-Longurova ◽  
Stojanche Jovanov

Medical textile is an extremely important subcategory of technical textile because it is covering a wide range of products. The term medical textile itself covers all types of textile materials that are used in the healthcare system for various purposes. Medical textile is also known as health textile and is one of the fastest growing sectors in the technical textile market. The growth rate of technical textiles in this area is due to constant improvements and innovations in both areas: textile technologies and medical procedures. Textile structures used in this field include yarns, woven, knitted and non-woven textile materials as well as composite materials reinforced with textiles. The number of applications is large and diverse, from simple surgical sutures to complex composite structures for bone and tissue replacement, hygiene materials, protective products used in operating rooms and in the process of postoperative wound treatment. The purpose of this paper is to emphasize the importance of technical textiles for medical, surgical and healtcare applications, to indicate which textiles are currently used in this field.


2012 ◽  
Vol 441 ◽  
pp. 489-493
Author(s):  
Bojana Voncina ◽  
A. Majcen Le Marechal ◽  
Tivadar Feczko

In our research we prepared various eco-friendly ethylcellulose nanocapsules which were grafted on various textile materials by using a polyfunctional reagent 1,2,3,4-butanetertacarboxylic acid (BTCA). To reduce curing temperature of the treatments, catalysts such as sodium hypophosphite (SHPI) or cyanamide (CA) were used. We prepared encapsulated textile materials (photochromic textile, cosmetotextile, medical textile) with various properties (textile response to light, textile with controlled release of active compounds or with selective adsorptivity)


2020 ◽  
Vol 15 ◽  
pp. 155892502094010
Author(s):  
Mehmet Orhan

For 20 years, antibacterial functionalization has been one of the most attractive research fields in the textile industry. Nowadays, globalization has spread the microorganisms everywhere and produced many epidemics and pandemics such as smallpox, cholera, tuberculosis, yellow fever, Spanish flu, and coronavirus. The textile materials treated with triclosan would be a strong alternative to obtain antibacterial function against microorganisms for the medical applications, such as face masks, lab coats, and wound dresses. This study aimed to investigate the characterization, antibacterial properties, and durability of triclosan on polyester, polyester/cotton, and cotton surfaces. The pure triclosan and presence of triclosan in solutions were detected by gas chromatography–mass spectrometry chromatograms. It can be seen that surfaces were homogeneously covered by triclosan on scanning electron microscope micrographs, and there were new bands on Fourier transform infrared spectra after treatments. Large inhibition zones around all surfaces were observed, and antibacterial activity slightly increased depending on increasing chemical concentrations. The samples demonstrated strong biocidal activity to bacteria for 3 h. They lost their antibacterial properties after washing, but they showed good antibacterial (bactericidal) properties and satisfactory durability to washes. The results show that triclosan is a highly effective and durable chemical on polyester and cotton surfaces for medical textile applications.


2005 ◽  
Vol 39 (3) ◽  
pp. 154-163 ◽  
Author(s):  
N. D. Oltarzhevskaya ◽  
G. E. Krichevskii

Author(s):  
Olena Cherniak ◽  
Nataliia Sorocolat ◽  
Iryna Kanytska ◽  
Ihor Bahaiev ◽  
Lina Fatieieva

Methods for sterilizing textile materials in a pandemic (COVID-19) and the disadvantages of these methods are presented. A number of modern scientific works related to the sterilization of textile materials in a pandemic are considered, aimed at developing a technology for sterilizing protective medical masks and medical suits by radiation methods using gamma radiation. As a result of the analysis, it was found that the use of gamma radiation is a very dangerous technological process since natural sources are used - gamma rays, radiation technologies with gamma radiation are difficult when disposing of spent energy sources and are not easy to maintain. For sterilization of textile materials, the method of ionizing radiation is proposed. The essence of the method is that the textile material is sterilized by accelerated electrons. The expediency of carrying out theoretical and experimental research has been determined. It was found that the main criterion for sterilization of textile materials is the absorbed dose. The absorbed dose is determined experimentally, but such a procedure is time-consuming and resource-intensive, and it is not always possible to carry it out. Therefore, to calculate the absorbed dose, it is proposed to apply the mathematical formula of the absorbed dose of medical textile materials, depending on the frequency of passage of pulses of the accelerated electron beam, conveyor speed and geometric parameters of textile materials, the mathematical formula will allow finding the optimal technological modes of the sterilization process. Using the mathematical model of the absorbed dose of radiation by the material with the proposed technology, taking into account the properties of materials, it is possible to calculate the modes of irradiation of various textile materials that differ in size, shape, and physical properties, which will make it possible to develop a system of normative modes for the technology of radiation-physical sterilization and to ensure the legislative and regulatory requirements of hygiene in conditions of a pandemic.


Author(s):  
Shaikh Md Mominul Alam ◽  
Shilpi Akter ◽  
Md Lutfor Rahman

The aim of this paper is to introduce novel dressing with Mikania Micrantha for quick blood clotting and wound healing. When epidermis of human skin is cut or scrapped, sometimes too much bleeding occurs. Excessive bleeding may cause death, if bleeding is not stopped immediately. To promote blood clotting & wound healing natural based bio materials are still insufficient in medical textile sector. To fill up this scarcity, woven fabric treated with Mikania micrantha leaf juice & leaf powder was examined. M. micrantha exhibits good blood clotting time in comparison with available dressing materials. Woven fabric (bandage) that contains M. micrantha can be used for cut wounds healing purpose. The experiments were carried out in environment friendly way which indicates the production & processing of these dressing materials can have enormous contribution to sustainable operations and products.


Sign in / Sign up

Export Citation Format

Share Document