scholarly journals Optimisation of aggregate gradation of ultra-high-performance concrete based on the modified compressible packing model

2021 ◽  
pp. 1-8
Author(s):  
Jinzhen Li ◽  
Lei Huang ◽  
Shaowen Huang
2007 ◽  
Vol 353-358 ◽  
pp. 1398-1401
Author(s):  
Jian Qing Gong ◽  
Han Ning Xiao ◽  
Zheng Yu Huang ◽  
Jiu Su Li ◽  
Jing Nie ◽  
...  

The rheological parameters of cement pastes were investigated by varying the type and content of micropowders and the ratio of water to binder. Compressible packing model was used to calculate the packing density and to evaluate the influence of micropowders gradation on the rheological properties of fresh cement pastes. Results indicate that the higher the packing density is, the lower the yielding shear stress and plastic viscosity will be. When the ratio of water to binder is less than 0.20, the cement paste with 15% UFA and 15% SF has highest packing density and lowest yielding shear stress and plastic viscosity, which is beneficial to the workability of ultra-high performance concrete.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Sign in / Sign up

Export Citation Format

Share Document