plastic viscosity
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 62)

H-INDEX

14
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 554
Author(s):  
Juan He ◽  
Congmi Cheng ◽  
Xiaofen Zhu ◽  
Xiaosen Li

The effect of silica fume on the rheological properties of a cement–silica fume–high range water reducer–water mixture with ultra-low water binder ratio (CSHWM) was studied. The results indicate that the W/B ratio and silica fume content have different effects on the rheological parameters, including the yield stress, plastic viscosity, and hysteresis loop area. The shear-thickening influence of CSHWM decreased with the increased silica fume content. When the silica fume content increased from 0% to 35%, the mixture with W/B ratio of 0.19 and 0.23 changed from a dilatant fluid to a Newtonian fluid, and then to a pseudoplastic fluid. When the silica fume content was less than 15%, the yield stress was close to 0. With the increase of silica fume content, the yield stress increased rapidly. The plastic viscosity and hysteresis loop area decreased slightly with the addition of a small amount of silica fume, but increased significantly with the continuous increase of silica fume. Compared with the Bingham and modified Bingham models, the Herschel–Buckley model is more applicable for this CSHWM.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 90
Author(s):  
Hengrui Liu ◽  
Xiao Sun ◽  
Yao Wang ◽  
Xueying Lu ◽  
Hui Du ◽  
...  

In this study, the rheology, fluidity, stability, and time-varying properties of cement paste with different substitute contents of silica fume (SF) were investigated. The result showed that the effects of SF on macro-fluidity and micro-rheological properties were different under different water–cement ratios. The addition of SF increased the yield stress and plastic viscosity in the range of 2.61–18.44% and 6.66–24.66%, respectively, and reduced the flow expansion in the range of 4.15–18.91%. The effect of SF on cement paste gradually lost its regularity as the w/c ratio increased. The SF can effectively improve the stability of cement paste, and the reduction range of bleeding rate was 0.25–4.3% under different water–cement ratios. The mathematical models of rheological parameters, flow expansion, and time followed the following equations: τ(t) = τ0 + k0t, η(t) = η0eat, and L(t) = L0 − k1t, L(t) = L0 − k1t − a1t2. The SF slowly increased the rheological parameters in the initial time period and reduced the degree of fluidity attenuation, but the effect was significantly enhanced after entering the accelerated hydration period. The mechanism of the above results was that SF mainly affected the fluidity and rheology of the paste through the effect of water film thickness. The small density of SF particles resulted in a low sedimentation rate in the initial suspended paste, which effectively alleviated the internal particle agglomeration effect and enhanced stability. The SF had a dilution effect and nucleation effect during hydration acceleration, and the increase of hydration products effectively increased the plastic viscosity.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1558
Author(s):  
Lili Cui ◽  
Hui Wang

Waste fly ash (WFA) is a kind of solid waste without reasonable disposition. The WFA with active substance can promote the cement hydration, therefore, WFA may enhance the mechanical strengths of cement-based materials. In this paper, the rheological properties (slump flow and plastic viscosity) of fresh cement paste with WFA ranging from 0% to 25% by mass ratio of cement were studied. The alternating current (AC) electrical resistance and direct current (DC) resistance time curves were determined. The AC impedance spectroscopy curves of the specimens cured for 1 day and 28 days were obtained. Finally, the mechanical strengths of hardened cement paste cured for 1 day, 3 days, 7 days, and 28 days were tested. The results showed that the slump flow was decreased and the plastic viscosity was increased by the addition of WFA and the increasing curing time. The AC electrical resistance increased in the form of the quadratic function with the cuing age. Meanwhile, the addition of WFA demonstrated an enhancing effect on the electrical conduction of cement paste. The variation rate of DC electrical resistance during the testing time increased with the increasing dosages of WFA and the curing age. The mechanical strengths increased with the addition of curing time and the content of WFA. The increasing rate of mechanical strengths increased with the addition of WFA (0~15%) and decreased with curing time. However, when the dosage of WFA increased from 15% to 25%, the increasing rate decreased.


2021 ◽  
Author(s):  
Abdulmalek Ahmed ◽  
Ahmed Abdulhamid Mahmoud ◽  
Salaheldin Elkatatny ◽  
Rahul Gajbhiye ◽  
Abdulaziz Al Majed

Abstract Cementing is an important operation for the integrity of the wellbore due to its role in providing several functions. To perform these functions, a high performance cement is required. Different types of additives and materials have been added to the cement slurry to improve its performance. Tire waste material is considered one of the greatest wastes globally. It is a dangerous material to the environment and human. Subsequently, it has been included in many industrial processes to reduce its hazards. This work evaluated the application of tire waste material in oil and gas industry to improve the properties of Saudi class G oil well cement. Two cement slurries were formulated under high pressure and high temperature of 3000 psi and 292 °F, respectively. The first slurry was the base cement without tire waste and the second slurry contained the tire waste. The effect of using the two slurries on the cement properties such as density variation, compressive strength plastic viscosity, Poisson's ratio and porosity was evaluated. The results showed that, when tire waste material was used, lower density variation was accomplished. Using tire waste was efficient to decrease the density variation to an extremely low proportion of 0.5%. Adding tire waste to the cement composition decreased its plastic viscosity by 53.1%. The tire waste cement sample had a higher Poisson's ratio than the base cement sample by 14.3%. Utilizing the tire waste improved the cement's compressive strength by 48.3%. The cement porosity was declined by 23.1% after adding the tire waste. Beside the property's enhancement in the cement, the application of tire waste has also an economical advantage, since it is inexpensive material which is influential in our daily life.


2021 ◽  
Vol 65 (2) ◽  
pp. 1-18
Author(s):  
Elisabeth Leite Skare ◽  
Rolands Cepuritis ◽  
Ernst Mørtsell ◽  
Sverre Smeplass ◽  
Jon Spangenberg ◽  
...  

Abstract There is a need for simple but precise prediction models for proportioning concrete with manufactured sand, for use in ready-mix concrete production. For the last two decades, the particle-matrix model has been used in Norway for proportioning and prediction of concrete flow based on the properties and proportions of two concrete phases: coarse particles and filler modified cement paste (matrix). This paper presents experimental testing of 117 cement pastes of which 107 contain filler, i.e. particles < 125 microns, from manufactured sand. Based on compositions and properties of ingoing materials in these mixes, an empirical equation is developed that predicts the rheological properties plastic viscosity, yield stress, flow resistance ratio and mini slump flow. Optimization by regression analysis provides a practical microproportioning equation that readily can be used as input in concrete proportioning with the particle-matrix model. The equation provides a coefficient of determination R2 = 0.98 for plastic viscosity, R2 = 0.95 for mini slump flow, R2 = 0.91 for flow resistance ratio and R2 = 0.80 for yield stress.


Author(s):  
Mizuki Takigawa ◽  
Hiroshi Nemoto ◽  
Shin-ichiro Hashimoto ◽  
Shigeyuki Date

AbstractPolycarboxylic acid-based superplasticizers are used in various types of concrete work. Wide variations in environmental temperatures are known to affect how well chemical admixtures perform as superplasticizers, influencing the properties of the concrete. However, little has been reported on changes in performance caused by thermal variations. Previous studies have reported that heating superplasticizers change the polymer structure, improving and sustaining cement particles' dispersibility. Moreover, the improved fluidity from thermal stimulation is not temporary. The effect has been observed to remain for about seven days, with the residual characteristics differing depending on the superplasticizers used. Therefore this study evaluates mortar stiffness when using thermally stimulated superplasticizers and evaluates how the stimulation affects construction performance using measures such as the flow and rheological properties (plastic viscosity) of fresh mortar, vane shear tests, blade viscometer tests, and mortar vibration box tests. Mortar's fluidity was found to improve by about 25% when using thermally stimulated additives, with plastic viscosity dropping by up to 45% and the stress likely to be needed for pumping also being reduced by about 16%. Filling speed was also found to increase by about 26%. Thus, thermal stimulation improves mortar and concrete construction performance, and it may be possible in the future to carry out the construction with fewer workers utilizing this technology’s benefits. The study indicates a need for further investigation of how thermal stimulation affects polymer molecules’ adsorption efficiency with cement to elucidate the mechanism at full scale and propose ways to adopt thermal stimulation at actual construction sites.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiuzhi Zhang ◽  
Liming Lin ◽  
Mengdi Bi ◽  
Hailong Sun ◽  
Heng Chen ◽  
...  

This paper investigates the effect of supplementary cementitious materials (SCMs) on the fresh and mechanical properties of nano-silica modified cement-based materials (NSMCBM) based on the response surface method (RSM). Fly ash (FA), ground granulated blast-furnace slag (GGBFS), and silica fume (SF) were selected and the Box-Behnken design (BBD) method was used to design mix proportion. Besides, the quadratic term model was used to describe the relationship between independent variables and responses including fluidity, yield stress, plastic viscosity, thixotropy, and 3, 7, 28, and 56 d compressive strength. Based on the quadratic term model, the response surface of each response was drawn to understand the influence of SCMs. Results showed that FA had significant effect on fluidity and thixotropy while three kinds of SCMs had extremely significant effect on plastic viscosity. Response surface plot showed that NS could increase the plastic viscosity of NSMCBM to 1.445 Pa•s (M16). However, the addition of FA and GGBFS decreased the plastic viscosity to 0.9 Pa•s, which was comparable with the reference sample (M17). Such value was 37.7% lower than that of M16. Meanwhile, NS complemented the reduction of compressive strength caused by SCMs. Thus, the synergy effect of SCMs and NS could improve both fresh and mechanical properties. At last, multi-objective optimization was utilized to optimize the proportion of SCMs considering the interaction between SCMs to achieve desirable parameters.


2021 ◽  
pp. 46-53
Author(s):  
Kateryna Leshchenko ◽  
Maksym Serik ◽  
Yevgen Pyvovarov ◽  
Andrii Zahorulko ◽  
Aleksey Zagorulko

The results of research on the effect of protein-mineral improved additive (PMIA) on the rheological parameters of minced meat, which can be used for manufacturing culinary products, including chopped semi-finished products of a high degree of readiness, are presented. It has been proven, that the additive can be used both as an ingredient, enriching calcium-digestible compounds and to improve a number of technological properties of minced meat, in particular after freezing, storage and thawing. The aim of the study was to determine the dependences of changes in the structural and mechanical characteristics of minced meat after the addition of PMIA and subsequent freezing to a temperature of –16…–18 °C and storage for 20 days. It has been found, that the addition of up to 7 % of PMIA leads to a marked increase in the conditionally instantaneous modulus of elasticity and highly elastic modulus in 4.4 times for minced beef and 2.7 and 4.4 times for chicken, respectively. It has been established, that the best stabilization of these indicators after freezing occurs at the content of PMIA at the level of 2…5 %. Studies of plastic viscosity and adhesion have shown that the use of up to 7 % of PMIA leads to an increase of 11…20 % and 26…64 %, respectively. After freezing, the plastic viscosity and adhesion of minced beef in the control decreased by 22.0 and 52 %, respectively, minced chicken – by 23.4 and 40.9 %. In the samples with a content of 7 % of PMIA, the decrease in plastic viscosity and adhesion is 7.2 and 4.4 % in minced beef and in chicken – 5.9 and 3.1 % respectively. It has been proven, that the use of PMIA in the amount of up to 7 % in the technology of minced meat production minimizes the negative destructive effect of low temperatures on the structural and mechanical characteristics of the finished product. Thus, it is expedient to use up to 7.0 % of the improved protein-mineral additive in the composition of minced meat to enrich the finished product with digestible calcium compounds and improve their structural and mechanical characteristics, in particular after freezing and storage


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5487
Author(s):  
Edyta Spychał ◽  
Ryszard Dachowski

In this article, the effect of hydrated lime and cellulose ether on the water retention, rheology, and application properties of plasters was studied. For mortars, the consistency, bulk density, and water retention were tested. Rheological measurements of pastes included yield stress and plastic viscosity. In addition to standard tests of mortars and examining the rheological properties of the pastes, a proprietary method for testing the application properties was proposed. The obtained research results made it possible to evaluate the performance of the tested plasters. An attempt was also made to correlate the rheological properties of pastes (plastic viscosity) to the water retention value. The influence of hydrated lime and cellulose ether on selected properties of pastes and plasters was also presented using the statistical Box–Behnken method. The subjective rating of an expert plasterer confirmed the necessity of the modification of plastering mortars with hydrated lime and cellulose ether. As shown, modification of cement plastering mortar with hydrated lime and cellulose ether at the same time allows obtaining a material with favorable technical and technological properties, especially mortars applied by machine.


Sign in / Sign up

Export Citation Format

Share Document