Prediction of service life of concrete structures using corrosion rate model

Author(s):  
R. Vedalakshmi
2006 ◽  
Vol 302-303 ◽  
pp. 610-617
Author(s):  
Jia Jin Zheng ◽  
Xin Zhu Zhou ◽  
Shi Lang Xu

Crack width is a significant parameter for assessing service life of reinforced concrete structures in chloride-laden environments. Corrosion-induced concrete cracking is a predominant causal factor influencing premature degradation of reinforced concrete structures, incurring considerable costs for repairs and inconvenience to the public due to interruptions. This gives rise to the need for accurate prediction of crack width in order to achieve cost-effectiveness in maintaining serviceability of concrete structures. It is in this regard that the present paper attempts to develop a quasi-brittle mechanical model to predict crack width of chloride contaminated concrete structures. Assuming that cracks be smeared uniformly in all directions and concrete be a quasi-brittle material, the displacement and stress in a concrete cover, before and after surface cracking, were derived respectively in an analytical manner. Crack width, as a function of the cover depth, steel bar diameter, corrosion rate and time, was then determined. Finally, the analysis results were verified by comparing the solution with the experimental results. The effects of the cover depth, steel bar diameter and corrosion rate on the service life were discussed in detail.


2019 ◽  
Vol 37 (5) ◽  
pp. 679-698 ◽  
Author(s):  
Toni A. Pakkala ◽  
Arto Köliö ◽  
Jukka Lahdensivu ◽  
Matti Pentti

PurposeA significant part of Finnish concrete building stock is relatively young. Thus methods to adopt the existing building stock to climate change are needed. To plan and correctly timing the service actions there is a need to study the rates of different deterioration mechanisms. The reinforcement corrosion in Finnish outdoor exposed concrete structures is almost solely carbonation-induced corrosion. In former studies, it has been shown that active corrosion phase can also have a major effect on the total service life of the structure. The paper aims to discuss these issues.Design/methodology/approachIn this study, the effect of climate change on predicted corrosion rate of concrete reinforcement in projected 2050 and 2100 climates compared to present climate were studied to consider adaptation methods for the climate change. The calculations are based on a corrosion propagation model, which takes into account four different climatic factors: wind-driven rain, temperature, relative humidity and solar radiation.FindingsA significantly higher corrosion rates and thus faster corrosion-induced damage can be expected in the future climate. The increase in corrosion rate is the highest in the late autumn and winter because of the increasing amount of precipitation and weaker conditions for concrete structures to dry. In addition, the duration of high corrosion rate periods is increasing which may shorten the propagation phase. However, corrosion rate is highly dependent on the direction of the greatest climate load and the grade of sheltering which can be taken into account in service life calculations and while planning service actions.Research limitations/implicationsThere are different sources of error because of the uncertainties with both the used model and the climate change scenarios. That is why the results are discussed in more general way than comparing the actual numbers with each other.Originality/valueThe propagation model used in this study has not been used before in adaptation studies. The climate change effect on carbonation-induced corrosion has also been limited while the studies have focused on chloride-induced corrosion.


2018 ◽  
Vol 4 (1) ◽  
pp. 165
Author(s):  
Herry Prabowo ◽  
Mochamad Hilmy

The assessment of the service life of concrete structures using the durability design approach is widely accepted nowadays. It is really encouraged that a simulation model can resemble the real performance of concrete during the service life. This paper investigates the concrete carbonation through probabilistic analysis. Data regarding Indonesian construction practice were taken from Indonesian National Standard (SNI). Meanwhile, data related to Indonesian weather condition for instance humidity and temperature are taken from local Meteorological, Climatological, and Geophysical Agency from 2004 until 2016. Hopefully the results can be a starting point for durability of concrete research in Indonesia.


Sign in / Sign up

Export Citation Format

Share Document