Dosing strategies for antiepileptic drugs: from a standard dose for all to individualised treatment by implementation of therapeutic drug monitoring

2016 ◽  
Vol 18 (4) ◽  
pp. 367-383 ◽  
Author(s):  
Cecilie Johannessen Landmark ◽  
Svein I. Johannessen ◽  
Torbjörn Tomson
2015 ◽  
Vol 38 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Natarajan Harivenkatesh ◽  
Natarajan Haribalaji ◽  
Darling Chellathai David ◽  
C. M. Prabu Kumar

Author(s):  
Matthew D. Krasowski ◽  
Thomas A. Long ◽  
Christine L. H. Snozek ◽  
Annabel Dizon ◽  
Barbarajean Magnani ◽  
...  

Context.— Therapeutic drug monitoring has traditionally been widely used for first-generation antiepileptic drugs (AEDs) such as carbamazepine and phenytoin. The last 2 decades have seen the introduction of second- and third-generation AEDs (eg, lamotrigine, levetiracetam, and topiramate) into clinical practice. Objective.— To use data from the College of American Pathologists Therapeutic Drug Monitoring, Extended proficiency testing survey to determine the performance of assays used for therapeutic drug monitoring of newer AEDs, including comparison of enzyme immunoassay and chromatographic techniques. Design.— Six years of proficiency testing surveys were reviewed (2013–2018). Results.— Steady growth was seen in participant volumes for newer AEDs. The analytical performance of automated enzyme immunoassays for lamotrigine, levetiracetam, and topiramate was similar to that of chromatographic methods, consistent with published literature using patient samples for comparisons. The majority of participating laboratories now use enzyme immunoassays to measure levetiracetam. Conclusions.— Survey results reflect steadily growing interest in therapeutic drug monitoring of newer AEDs. The increasing availability of robust immunoassays for new AEDs should facilitate their clinical utility, especially for clinical laboratories that do not perform chromatographic assays for therapeutic drug monitoring.


2019 ◽  
Vol 87 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Irene Aícua‐Rapún ◽  
Pascal André ◽  
Andrea O. Rossetti ◽  
Philippe Ryvlin ◽  
Andreas F. Hottinger ◽  
...  

2005 ◽  
Vol 18 (6) ◽  
pp. 444-460 ◽  
Author(s):  
Michele Y. Splinter

Eight new antiepileptic drugs (AEDs) have been approved for use within the United States within the past decade. They are felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine, topiramate, and zonisamide. These afford clinicians with more options to increase efficacy and tolerability in the treatment of patients with epilepsy. Pharmacokinetic properties and drug interactions with other AEDs and other medications taken for comorbidities are individually discussed for each of these new agents. Drug concentrations are not routinely monitored for these newer agents, and there have been few studies designed to investigate their concentration-effect relationships. For most of these medications, the concentrations observed in responders and nonresponders overlap considerably and levels associated with efficacy are often associated with adverse events, complicating the definition of target ranges. Also, epilepsy manifests itself sporadically causing difficulty in clinically monitoring efficacy of medications. Therapeutic drug monitoring provides for the individualization of treatment for these agents, which is important because they demonstrate significant variability in inter- and intraindividual pharmaco-kinetic properties. Therapeutic drug monitoring also allows for identification of noncompliance, drug interactions, and toxicity. Current knowledge of the relationships between efficacy, toxicity, and drug concentrations is discussed.


2010 ◽  
Vol 55 (2) ◽  
pp. 557-560 ◽  
Author(s):  
Michael J. Connor ◽  
Charbel Salem ◽  
Seth R. Bauer ◽  
Christina L. Hofmann ◽  
Joseph Groszek ◽  
...  

ABSTRACTSepsis and multisystem organ failure are common diagnoses affecting nearly three-quarters of a million Americans annually. Infection is the leading cause of death in acute kidney injury, and the majority of critically ill patients who receive continuous dialysis also receive antibiotics. Dialysis equipment and prescriptions have gradually changed over time, raising concern that current drug dosing recommendations in the literature may result in underdosing of antibiotics. Our research group directed its attention toward antibiotic dosing strategies in patients with acute renal failure (ARF), and we sought data confirming that patients receiving continuous dialysis and antibiotics actually were achieving therapeutic plasma drug levels during treatment. In the course of those investigations, we explored “fast-track” strategies to estimate plasma drug concentrations. As most antimicrobial antibiotics are small molecules and should pass freely through modern high-flux hemodialyzer filters, we hypothesized that continuous renal replacement therapy (CRRT) effluent could be used as the medium for drug concentration measurement by reverse-phase high-pressure liquid chromatography (HPLC). Here we present the first data demonstrating this approach for piperacillin-tazobactam. Paired blood and dialysate trough-peak-trough samples were drawn from 19 patients receiving piperacillin-tazobactam and continuous venovenous hemodialysis (CVVHD). Total, free, and dialysate drug concentrations were measured by HPLC. Dialysate drug levels predicted plasma free drug levels well (r2= 0.91 and 0.92 for piperacillin and tazobactam, respectively) in all patients. These data suggest a strategy for therapeutic drug monitoring that minimizes blood loss from phlebotomy and simplifies analytic procedures.


2009 ◽  
Vol 14 (2) ◽  
pp. 66-74
Author(s):  
Peter Gal

Therapeutic drug monitoring is increasingly giving way to dosing drugs based on population-based pharmacokinetic parameters, even when pharmacokinetic values vary quite a bit in individual patients. Further, drug concentrations are often considered appropriate if they are within a defined therapeutic range, even if the patient response is suboptimal. This lecture discusses the limitations of therapeutic ranges in neonates, and proposes greater emphasis on pharmacodynamic curves to individualize drug therapy. Examples are provided using methylxanthines, indomethacin, antiepileptic drugs and aminoglycosides. The potential to use pharmacokinetic findings to describe physiologic changes and occasionally assist with diagnosis is also discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jia-Yi Long ◽  
Hong-Li Guo ◽  
Xin He ◽  
Ya-Hui Hu ◽  
Ying Xia ◽  
...  

Caffeine citrate is the drug of choice for the pharmacological treatment of apnea of prematurity. Factors such as maturity and genetic variation contribute to the interindividual variability in the clinical response to caffeine therapy in preterm infants, making the optimal dose administered controversial. Moreover, the necessity for therapeutic drug monitoring (TDM) of caffeine is still worth discussing due to the need to achieve the desired target concentrations as well as concerns about the safety of higher doses. Therefore, we reviewed the pharmacokinetic profile of caffeine in preterm infants, evidence of the safety and efficacy of different doses of caffeine, therapeutic concentration ranges of caffeine and impact of genetic variability on caffeine therapy. Whereas the safety and efficacy of standard-dose caffeine have been demonstrated, evidence for the safety of higher administered doses is insufficient. Thus, preterm infants who lack clinical response to standard-dose caffeine therapy are of interest for TDM when dose optimization is performed. Polymorphisms in pharmacodynamics-related genes, but not in pharmacokinetics-related genes, have a significant impact on the interindividual variability in clinical response to caffeine therapy. For preterm infants lacking clinical response, how to develop individualized medication regimens for caffeine remains to be explored.


Sign in / Sign up

Export Citation Format

Share Document