Exploring the Possibility of Utilizing Facial Skin Temperature for Reflection of Subjective Thermal Comfort Sensation on the Composition of Learner-Centered Comfort Learning Environment

2014 ◽  
Vol 25 (1) ◽  
Author(s):  
Boseong Kim
Author(s):  
Faridah Faridah ◽  
Memory Motivanisman Waruwu ◽  
Titis Wijayanto ◽  
Rachmawan Budiarto ◽  
Raditya Cahya Pratama ◽  
...  

This paper concerns the feasibility study of 7 classes of thermal sensation detection in Indonesia's indoor environment using a low-cost thermal camera through face skin temperature. This study is required as an initial step to build a thermal comfort sensor system of HVAC control systems to produce a comfortable indoor environment with minimum and efficient energy use. The feasibility study was started by studying the thermoregulation system of respondents in Indonesia through measuring their body and facial skin temperatures under heating and cooling conditions, including their relationship with thermal sensations. The facial skin temperature variable, which is covered by four measurement points, namely forehead, nose, cheeks, and chin, represents the MST variable by the coefficient of determination of 0.54. The thermal sensation detection algorithm based on Artificial Neural Network (ANN) is 35.7% of accuracy. The thermal sensation questionnaire with 7 class categories is unsuitable for Indonesian respondents, and the number of the category classes predicted too much compared to the number of inputs. The detection algorithm has better accuracy with a smaller number of classes, namely 52.2% and 68.70% for the 5 and 3 classes of thermal sensation. Practical application: The air conditioning buildings system is possible to influence a thermal environmental control system to meet the occupants' thermal comfort level requirement in an indoor environment if the system is equipped with a sensor that can detect the occupants' thermal sensations. The thermal camera can be used as a non-contact sensor, detecting the occupant’s thermal sensation by reading the occupant's face skin temperature in an indoor environment.


2017 ◽  
Vol 42 (2) ◽  
pp. 173-193 ◽  
Author(s):  
Ferenc Kalmár

Buildings rarely have homogeneous thermal indoor environments. Transparent building elements are one of the sources of thermal asymmetry. Using advanced personalised ventilation systems, the discomfort caused by radiation asymmetry may be reduced. A series of measurements involving 20 subjects were carried out under controlled environmental conditions to investigate subjective thermal comfort in the case of asymmetric radiation combined with the personalised ventilation. Analysis showed that the subjective thermal comfort sensation without a personalised ventilation system is similar to the calculated predicted mean vote. However, there is a significant difference between the responses of female and male participants. The advanced personalised ventilation system lowers the subjective thermal comfort sensation, but does it differently for men and women. The skin temperatures of the hands of the women were significantly lower than that of the men. In the case of the men, radiation asymmetry led to significant differences in the facial skin temperature, while in the case of the women, the differences in the facial skin temperature were not significant.


2016 ◽  
Vol 136 (11) ◽  
pp. 1581-1585 ◽  
Author(s):  
Tota Mizuno ◽  
Takeru Sakai ◽  
Shunsuke Kawazura ◽  
Hirotoshi Asano ◽  
Kota Akehi ◽  
...  

2008 ◽  
Vol 31 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Rie Nakanishi ◽  
Kyoko Imai-Matsumura
Keyword(s):  

2019 ◽  
Vol 1 (3) ◽  
pp. 1-4
Author(s):  
Zaina Norhallis Zainol ◽  
Masine Md. Tap ◽  
Haslinda Mohamed Kamar

Thermal comfort is the human subject perceive satisfaction to the work environment. The thermal comfort need to be achieve towards productive working environment. The comfort level of the subject is affected by the human skin temperature. To assess the skin temperature with the sorrounding by conducting human experiment in the climatic chamber. It is rigorous and complex experiment.This study was developed to predict human skin temperature in comfort level with the finite element method and the bioheat equation. The bioheat equation is a consideration of metabolic heat generation and the blood perfusion to solve heat transfer of the living tissue. It is to determine the skin temperature focussing at the human arm. From the study, it is found that the predicted skin temperature value were in well agreement with the experimental results. The percentage error insignificant with acceptable error of 1.05%.


Sign in / Sign up

Export Citation Format

Share Document