scholarly journals Visual Multi-Metric Grouping of Eye-Tracking Data

2018 ◽  
Vol 10 (5) ◽  
Author(s):  
Ayush Kumar ◽  
Rudolf Netzel ◽  
Michael Burch ◽  
Daniel Weiskopf ◽  
Klaus Mueller

We present an algorithmic and visual grouping of participants and eye-tracking metrics derived from recorded eye-tracking data. Our method utilizes two well-established visualization concepts. First, parallel coordinates are used to provide an overview of the used metrics, their interactions, and similarities, which helps select suitable metrics that describe characteristics of the eye-tracking data. Furthermore, parallel coordinates plots enable an analyst to test the effects of creating a combination of a subset of metrics resulting in a newly derived eye-tracking metric. Second, a similarity matrix visualization is used to visually represent the affine combination of metrics utilizing an algorithmic grouping of subjects that leads to distinct visual groups of similar behavior. To keep the diagrams of the matrix visualization simple and understandable, we visually encode our eye- tracking data into the cells of a similarity matrix of participants. The algorithmic grouping is performed with a clustering based on the affine combination of metrics, which is also the basis for the similarity value computation of the similarity matrix. To illustrate the usefulness of our visualization, we applied it to an eye-tracking data set involving the reading behavior of metro maps of up to 40 participants. Finally, we discuss limitations and scalability issues of the approach focusing on visual and perceptual issues.

2020 ◽  
Author(s):  
Kun Sun

Expectations or predictions about upcoming content play an important role during language comprehension and processing. One important aspect of recent studies of language comprehension and processing concerns the estimation of the upcoming words in a sentence or discourse. Many studies have used eye-tracking data to explore computational and cognitive models for contextual word predictions and word processing. Eye-tracking data has previously been widely explored with a view to investigating the factors that influence word prediction. However, these studies are problematic on several levels, including the stimuli, corpora, statistical tools they applied. Although various computational models have been proposed for simulating contextual word predictions, past studies usually preferred to use a single computational model. The disadvantage of this is that it often cannot give an adequate account of cognitive processing in language comprehension. To avoid these problems, this study draws upon a massive natural and coherent discourse as stimuli in collecting the data on reading time. This study trains two state-of-art computational models (surprisal and semantic (dis)similarity from word vectors by linear discriminative learning (LDL)), measuring knowledge of both the syntagmatic and paradigmatic structure of language. We develop a `dynamic approach' to compute semantic (dis)similarity. It is the first time that these two computational models have been merged. Models are evaluated using advanced statistical methods. Meanwhile, in order to test the efficiency of our approach, one recently developed cosine method of computing semantic (dis)similarity based on word vectors data adopted is used to compare with our `dynamic' approach. The two computational and fixed-effect statistical models can be used to cross-verify the findings, thus ensuring that the result is reliable. All results support that surprisal and semantic similarity are opposed in the prediction of the reading time of words although both can make good predictions. Additionally, our `dynamic' approach performs better than the popular cosine method. The findings of this study are therefore of significance with regard to acquiring a better understanding how humans process words in a real-world context and how they make predictions in language cognition and processing.


2015 ◽  
Vol 23 (9) ◽  
pp. 1508
Author(s):  
Qiandong WANG ◽  
Qinggong LI ◽  
Kaikai CHEN ◽  
Genyue FU

2019 ◽  
Vol 19 (2) ◽  
pp. 345-369 ◽  
Author(s):  
Constantina Ioannou ◽  
Indira Nurdiani ◽  
Andrea Burattin ◽  
Barbara Weber

Author(s):  
Shafin Rahman ◽  
Sejuti Rahman ◽  
Omar Shahid ◽  
Md. Tahmeed Abdullah ◽  
Jubair Ahmed Sourov

2021 ◽  
Vol 15 ◽  
pp. 174830262199962
Author(s):  
Patrick O Kano ◽  
Moysey Brio ◽  
Jacob Bailey

The Weeks method for the numerical inversion of the Laplace transform utilizes a Möbius transformation which is parameterized by two real quantities, σ and b. Proper selection of these parameters depends highly on the Laplace space function F( s) and is generally a nontrivial task. In this paper, a convolutional neural network is trained to determine optimal values for these parameters for the specific case of the matrix exponential. The matrix exponential eA is estimated by numerically inverting the corresponding resolvent matrix [Formula: see text] via the Weeks method at [Formula: see text] pairs provided by the network. For illustration, classes of square real matrices of size three to six are studied. For these small matrices, the Cayley-Hamilton theorem and rational approximations can be utilized to obtain values to compare with the results from the network derived estimates. The network learned by minimizing the error of the matrix exponentials from the Weeks method over a large data set spanning [Formula: see text] pairs. Network training using the Jacobi identity as a metric was found to yield a self-contained approach that does not require a truth matrix exponential for comparison.


Sign in / Sign up

Export Citation Format

Share Document