A New Gamma Generalized Lindley-Log- logistic Distribution with Applications

2020 ◽  
Vol 15 (4) ◽  
pp. 2451-2479
Author(s):  
Broderick Olusegun Oluyede ◽  
Thatayaone Moakofi ◽  
Boikanyo Makubate

A new distribution called the gamma exponentiated Lindley Log-logistic (GELLLoG) distribution is developed. Some properties of the new distribution including hazard function, quantile function, moments, conditional moments, mean and median deviations, Bonferroni and Lorenz curves, distribution of the order statistics and Réenyi entropy are derived. Maximum likelihood estimation technique is used to estimate the model parameters. We conduct a simulation study to examine the bias and mean square error of the maximum likelihood estimators. Finally, applications to real datasets to illustrate the usefulness of the proposed distribution are presented.

2021 ◽  
Vol 10 (4) ◽  
pp. 33
Author(s):  
Boikanyo Makubate ◽  
Broderick Oluyede ◽  
Morongwa Gabanakgosi

A new distribution called the Lindley-Burr XII (LBXII) distribution is proposed and studied. Some structural properties of the new distribution including moments, conditional moments, distribution of the order statistics and R´enyi entropy are derived. Maximum likelihood estimation technique is used to estimate the model parameters. A simulation study to examine the bias and mean square error of the maximum likelihood estimators is presented and applications to real data sets in order to illustrate the usefulness of the new distribution are given.


2021 ◽  
Vol 71 (5) ◽  
pp. 1269-1290
Author(s):  
Thatayaone Moakofi ◽  
Broderick Oluyede ◽  
Boikanyo Makubate

Abstract The authors introduce a new generalized distribution called the Marshall-Olkin Lindley-Log-logistic (MOLLLoG) distribution and discuss its distributional properties. The properties include hazard function, quantile function, moments, conditional moments, mean and median deviations, Bonferroni and Lorenz curves, distribution of the order statistics and Rényi entropy. A Monte Carlo simulation study was used to examine the bias, relative bias and mean square error of the maximum likelihood estimators. The betterness of the new distribution compared to other distributions is illustrated by means of two real life datasets.


2016 ◽  
Vol 45 (3) ◽  
pp. 43-69 ◽  
Author(s):  
Broderick Oluyede ◽  
Susan Foya ◽  
Gayan Warahena-Liyanage ◽  
Shujiao Huang

In this paper, a new generalized distribution called the log-logisticWeibull (LLoGW) distribution is developed and presented. This dis-tribution contain the log-logistic Rayleigh (LLoGR), log-logistic expo-nential (LLoGE) and log-logistic (LLoG) distributions as special cases.The structural properties of the distribution including the hazard func-tion, reverse hazard function, quantile function, probability weightedmoments, moments, conditional moments, mean deviations, Bonferroniand Lorenz curves, distribution of order statistics, L-moments and Renyientropy are derived. Method of maximum likelihood is used to estimatethe parameters of this new distribution. A simulation study to examinethe bias, mean square error of the maximum likelihood estimators andwidth of the condence intervals for each parameter is presented. Finally, real data examples are presented to illustrate the usefulness and applicability of the model.


2018 ◽  
Vol 7 (3) ◽  
pp. 72
Author(s):  
Broderick O. Oluyede ◽  
Huybrechts F. Bindele ◽  
Boikanyo Makubate ◽  
Shujiao Huang

A new generalized distribution called the {\em log-logistic modified Weibull} (LLoGMW) distribution is presented. This distribution includes many submodels such as the log-logistic modified Rayleigh, log-logistic modified exponential, log-logistic Weibull, log-logistic Rayleigh, log-logistic exponential, log-logistic, Weibull, Rayleigh and exponential distributions as special cases. Structural properties of the distribution including the hazard function, reverse hazard function, quantile function, probability weighted moments, moments, conditional moments, mean deviations, Bonferroni and Lorenz curves, distribution of order statistics, L-moments and R\'enyi entropy are derived. Model parameters are estimated based on the method of maximum likelihood. Finally, real data examples are presented to illustrate the usefulness and applicability of the model.


2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


Stats ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 77-91
Author(s):  
Broderick Oluyede ◽  
Boikanyo Makubate ◽  
Adeniyi Fagbamigbe ◽  
Precious Mdlongwa

A new compound distribution called Burr XII-Weibull-Logarithmic (BWL) distribution is introduced and its properties are explored. This new distribution contains several new and well known sub-models, including Burr XII-Exponential-Logarithmic, Burr XII-Rayleigh-Logarithmic, Burr XII-Logarithmic, Lomax-Exponential-Logarithmic, Lomax–Rayleigh-Logarithmic, Weibull, Rayleigh, Lomax, Lomax-Logarithmic, Weibull-Logarithmic, Rayleigh-Logarithmic, and Exponential-Logarithmic distributions. Some statistical properties of the proposed distribution including moments and conditional moments are presented. Maximum likelihood estimation technique is used to estimate the model parameters. Finally, applications of the model to real data sets are presented to illustrate the usefulness of the proposed distribution.


2017 ◽  
Vol 6 (3) ◽  
pp. 24 ◽  
Author(s):  
Gauss M. Cordeiro ◽  
Thiago A. N. De Andrade ◽  
Marcelo Bourguignon ◽  
Frank Gomes-Silva

We study a new two-parameter lifetime model called the exponentiated generalized standardized half-logistic distribution, which extends the half-logistic pioneered by Balakrishnan in the eighties. We provide explicit expressions for the moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves, and order statistics. The model parameters are estimated by the maximum likelihood method. A simulation study reveals that the estimators have desirable properties such as small biases and variances even in moderate sample sizes. We prove empirically that the new distribution provides a better fit to a real data set than other competitive models.


2020 ◽  
Vol 4 (2) ◽  
pp. 327-340
Author(s):  
Ahmed Ali Hurairah ◽  
Saeed A. Hassen

In this paper, we introduce a new family of continuous distributions called the beta transmuted Dagum distribution which extends the beta and transmuted familys. The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment generating function, quantiles and stress-strength of the beta transmuted Dagum distribution (BTD) are provided and discussed in detail. The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out to show the performance of the maximum likelihood estimate of parameters of the new distribution. The usefulness of the new model is illustrated through an application to a real data set.


Stats ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 15-31
Author(s):  
Arslan Nasir ◽  
Haitham Yousof ◽  
Farrukh Jamal ◽  
Mustafa Korkmaz

In this work, we introduce a new Burr XII power series class of distributions, which is obtained by compounding exponentiated Burr XII and power series distributions and has a strong physical motivation. The new distribution contains several important lifetime models. We derive explicit expressions for the ordinary and incomplete moments and generating functions. We discuss the maximum likelihood estimation of the model parameters. The maximum likelihood estimation procedure is presented. We assess the performance of the maximum likelihood estimators in terms of biases, standard deviations, and mean square of errors by means of two simulation studies. The usefulness of the new model is illustrated by means of three real data sets. The new proposed models provide consistently better fits than other competitive models for these data sets.


Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Ibrahim Elbatal ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy ◽  
Sharifah Alrajhi

In this paper, we introduce a new continuous probability distribution with five parameters called the modified beta Gompertz distribution. It is derived from the modified beta generator proposed by Nadarajah, Teimouri and Shih (2014) and the Gompertz distribution. By investigating its mathematical and practical aspects, we prove that it is quite flexible and can be used effectively in modeling a wide variety of real phenomena. Among others, we provide useful expansions of crucial functions, quantile function, moments, incomplete moments, moment generating function, entropies and order statistics. We explore the estimation of the model parameters by the obtained maximum likelihood method. We also present a simulation study testing the validity of maximum likelihood estimators. Finally, we illustrate the flexibility of the distribution by the consideration of two real datasets.


Sign in / Sign up

Export Citation Format

Share Document