An alternative distribution to Lindley and Power Lindley distributions with characterizations, different estimation methods and data applications

2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.

Author(s):  
Ehab Mohamed Almetwally ◽  
Ahmed Z. Afify ◽  
G. G. Hamedani

In this paper, we introduce a new there-parameter Rayleigh distribution, called the Marshall-Olkin alpha power Rayleigh (MOAPR) distribution. Some statistical properties of the MOAPR distribution are obtained. The proposed model is characterized based on truncated moments and reverse hazard function. The maximum likelihood and bootstrap estimation methods are considered to estimate the MOPAR parameters. A Monte Carlo simulation study is performed to compare the maximum likelihood and bootstrap estimation methods. Superiority of the MOAPR distribution over some well-known distributions is illustrated by means of two real data sets.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Huda M. Alshanbari ◽  
Abd Al-Aziz Hosni El-Bagoury ◽  
Ahmed M. Gemeay ◽  
E. H. Hafez ◽  
Ahmed Sedky Eldeeb

This paper introduced a relatively new mixture distribution that results from a mixture of Fréchet–Weibull and Pareto distributions. Some properties of the new statistical model were derived, such as moments with their related measures, moment generating function, mean residual life function, and mean deviation. Furthermore , different estimation methods were introduced for determining the unknown parameters of the proposed model. Finally, we introduced three real data sets which were applied to our distribution and compared them with other well-known statistical competitive models to show the superiority of our model for fitting the three real data sets, and we can clearly see that our distribution outperforms its competitors. Also, to verify our results, we carried out the existence and uniqueness test to the log-likelihood to determine whether the roots are global maximum or not.


Author(s):  
M. R. Mahmoud ◽  
R. M. Mandouh ◽  
R. E. Abdelatty

In this paper the T-R{Y} framework is used for proposing a new distribution that called The Lomax-Gumbel{Frechet} distribution. We study in details the properties of this distribution including hazard function, quantile Function, the skewness, the kurtosis, transformation, Renyi entropy, and moment generating function. Estimate of the parameters will be obtained using the MLE method. We present a simulation study and t the distribution to two real data sets.


Author(s):  
Salman Abbas ◽  
Gamze Ozal ◽  
Saman Hanif Shahbaz ◽  
Muhammad Qaiser Shahbaz

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone family of distributions. We have studied some statistical properties of the proposed distribution including quantile function, moment generating function, probability generating function, raw moments, incomplete moments, probability, weighted moments, Rayeni and q th entropy. The have obtained numerical values of the various measures to see the eect of model parameters. Distribution of of order statistics for the proposed model has also been obtained. The estimation of the model parameters has been done by using maximum likelihood method. The eectiveness of proposed model is analyzed by means of a real data sets. Finally, some concluding remarks are given.


Author(s):  
Sule Ibrahim ◽  
Bello Olalekan Akanji ◽  
Lawal Hammed Olanrewaju

We propose a new distribution called the extended generalized inverse exponential distribution with four positive parameters, which extends the generalized inverse exponential distribution. We derive some mathematical properties of the proposed model including explicit expressions for the quantile function, moments, generating function, survival, hazard rate, reversed hazard rate and odd functions. The method of maximum likelihood is used to estimate the parameters of the distribution. We illustrate its potentiality with applications to two real data sets which show that the extended generalized inverse exponential model provides a better fit than other models considered.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 412 ◽  
Author(s):  
Hadeel S. Klakattawi ◽  
Wedad H. Aljuhani

In the following article, a new five-parameter distribution, the alpha power exponentiated Weibull-exponential distribution is proposed, based on a newly developed technique. It is of particular interest because the density of this distribution can take various symmetric and asymmetric possible shapes. Moreover, its related hazard function is tractable and showing a great diversity of asymmetrical shaped, including increasing, decreasing, near symmetrical, increasing-decreasing-increasing, increasing-constant-increasing, J-shaped, and reversed J-shaped. Some properties relating to the proposed distribution are provided. The inferential method of maximum likelihood is employed, in order to estimate the model’s unknown parameters, and these estimates are evaluated based on various simulation studies. Moreover, the usefulness of the model is investigated through its application to three real data sets. The results show that the proposed distribution can, in fact, better fit the data, when compared to other competing distributions.


Author(s):  
Mohamed G. Khalil ◽  
Wagdy M. Kamel

A new three-parameter life parametric model called the Marshall-Olkin generalized Weibull is defined and studied. Relevant properties are mathematically derived and analyzed. The new density exhibits various important symmetric and asymmetric shapes with different useful kurtosis. The new failure rate can be “constant”, “upside down-constant (reversed U-HRF-constant)”, “increasing then constant”, “monotonically increasing”, “J-HRF” and “monotonically decreasing”. The method of maximum likelihood is employed to estimate the unknown parameters. A graphical simulation is performed to assess the performance of the maximum likelihood estimation. We checked and proved empirically the importance, applicability and flexibility of the new Weibull model in modeling various symmetric and asymmetric types of data. The new distribution has a high ability to model different symmetric and asymmetric types of data.


2017 ◽  
Vol 40 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Mirza Naveed Shahzad ◽  
Faton Merovci ◽  
Zahid Asghar

The Singh-Maddala distribution is very popular to analyze the data on income, expenditure, actuarial, environmental, and reliability related studies. To enhance its scope and application, we propose four parameters transmutedSingh-Maddala distribution, in this study. The proposed distribution is relatively more flexible than the parent distribution to model a variety of data sets. Its basic statistical properties, reliability function, and behaviors of the hazard function are derived. The hazard function showed the decreasing and an upside-down bathtub shape that is required in various survival analysis. The order statistics and generalized TL-moments with their special cases such as L-, TL-, LL-, and LH-moments are also explored. Furthermore, the maximum likelihood estimation is used to estimate the unknown parameters of the transmuted Singh-Maddala distribution. The real data sets are considered to illustrate the utility and potential of the proposed model. The results indicate that the transmuted Singh-Maddala distribution models the datasets better than its parent distribution.


2021 ◽  
Vol 9 (2) ◽  
pp. 311-333
Author(s):  
Hanaa Elgohari

In this paper, we introduce a new generalization of the Exponentiated Exponential distribution. Various structural mathematical properties are derived. Numerical analysis for mean, variance, skewness and kurtosis and the dispersion index is performed. The new density can be right skewed and symmetric with "unimodal" and "bimodal" shapes. The new hazard function can be "constant", "decreasing", "increasing", "increasing-constant", "upside down-constant", "decreasing nstant". Many bivariate and multivariate type model have been also derived. We assess the performance of the maximum likelihood method graphically via the biases and mean squared errors. The usefulness and flexibility of the new distribution is illustrated by means of two real data sets.


2017 ◽  
Vol 18 (2) ◽  
pp. 0233 ◽  
Author(s):  
Hassan S Bakouch ◽  
Sanku Dey ◽  
Pedro Luiz Ramos ◽  
Francisco Louzada

In this paper, we have considered different estimation methods of the unknown parameters of a binomial-exponential 2 distribution. First, we briefly describe different frequentist approaches such as the method of moments, modified moments, ordinary least-squares estimation, weightedleast-squares estimation, percentile, maximum product of spacings, Cramer-von Mises type minimum distance, Anderson-Darling and Right-tail Anderson-Darling, and compare them using extensive numerical simulations. We apply our proposed methodology to three real data sets related to the total monthly rainfall during April, May and September at Sao Carlos, Brazil.


Sign in / Sign up

Export Citation Format

Share Document