scholarly journals Stress-strain state of metal in deformation zone during production of steel section billets on the unit of combined continuous casting and deformation. Report 1

2020 ◽  
Vol 63 (7) ◽  
pp. 548-553
Author(s):  
O. S. Lekhov ◽  
A. V. Mikhalev

Volumetric problem of determining stress-strain state of metal in deformation zone during forming of three section billets from the slab by separating collars of grooved strikers on the unit of combined continuous casting and deformation was set and solved. The expediency of using such unit was justified for longitudinal division mation are given for St3sp steel. The solid-state finite elements used in calculation of stress-strain state of metal in deformation zone and dimensions of the grid are described. The results of calculation of stress-strain state of metal in deformation zone were obtained by solving the problem of elasticity by the finite element method in volumetric formulation. The results of calculation of displacements and stresses in deformation zone are given in form of graphs and tables by working surfaces in four cross sections and are presented for characteristic points. Values and regularities of distribution of axial displacements in width and length of deformation center were determined during introduction of strikers separating collars into continuously cast slab in production of three section steel billets on the unit of combined continuous casting and deformation.

2020 ◽  
Vol 63 (9) ◽  
pp. 730-734
Author(s):  
O. S. Lekhov ◽  
A. V. Mikhalev

Stress state of metal in deformation zone during introduction of the separating collars of the grooved die into continuously casted steel slab was calculated for production of section billets on the unit of combined continuous casting and deformation. Calculation of axial, tangential and equivalent stresses arising in deformation zone of metal was made in four sections of deformation zone and its results are presented in specific points and lines. View of the section of deformation zone and location of specific points are provided. The stress state of metal in zone of cyclic deformation at formation of three steel section billets from continuously cast slab by separating collars of grooved die on the unit of combined continuous casting and deformation was determined by solving extensive problem of elasticity with the finite element method using the ANSYS package. The results of calculation of axial, tangential and equivalent stresses according to Mises in deformation zone are given in form of graphs and tables for working surfaces in four cross sections. The values and regularities of distribution of these stresses along the length and width of deformation zone were determined. The character of axial stresses distribution by characteristic lines located along the length of deformation zone is shown. Values of the highest compressive and tensile axial stresses arising in deformation zone during introduction of separating collars of grooved were obtained for the unit of combined continuous casting and deformation.


Author(s):  
A. P. Oliinyk ◽  
B. S. Nezamay ◽  
L. I. Feshanych

The task of estimating the stress-strain state of pipelines through which gas-liquid mixtures with aggressive components are transported is considered, the purpose, object and object of research are established. The analysis of the current state of scientific and technical researches on the given subject is carried out, the circle of unresolved problems is revealed. The combined effect on the pipelines through which gas-liquid mixtures with aggressive components are transported stress – strained state change  is estimated by two models - the model for determining the change of the stress-strain state of the pipeline by data on the surface points certain set displacement   taking into account the quasi-stationarity of the process. The device uses interpolation smoothing splines and methods of differential geometry, 6 components of strain and stress tensors are determined. In order to substantiate the method of estimation of annular stresses at the wear of the pipeline walls due to the action of the aggressive components of the transported mixtures, systems of equilibrium equations for pipeline sections and for quasi-rectilinear sections with altered cross-section configuration have been derived. Boundaryt conditions for equilibrium equations are established. Calculation formulas for estimation of annular stresses arising under the action of internal pressure for sections with shape defects caused by the action of aggressive components are established. The results of calculations that allow to quantify the change of the most significant ring stresses arising in the pipeline material under the action of internal pressure in the pipeline cross sections, which were exposed to the aggressive components, are presented. It is assumed that the deformed sections are little different from the shape of the circle.


Author(s):  
V. F. Danenko ◽  
◽  
L. M. Volgograd State Technical University

A computer finite-element simulation of the stress-strain state of elements of a closed rope under conditions of joint tension and torsion has been carried out. The redistribution of axial forces and torques in the cross sections of layers during rotation of the rope under the influence of external torque was determined, which leads to a decrease in the safety margin of the rope, a violation of the compatibility of axial and radial movements in the layers and the structural integrity of the rope in the form of wire breakage of the outer layer.


2022 ◽  
Author(s):  
O.S. Zhelezkov

Abstract. Research has been carried out on the process of plastic folding of bar stocks with round and barrel-shaped cross-sections. The dependence of the movement of the movable tool on the bending angle has been established. The force parameters of the deformation process and the stress-strain state in the bending workpiece are determined based on the results of finite element modeling of plastic bending.


2018 ◽  
Vol 245 ◽  
pp. 03020 ◽  
Author(s):  
Svetlana Roshchina ◽  
Mikhail Lukin ◽  
Mikhail Lisyatnikov ◽  
Artem Koscheev

For the composite structures based on wood, that include reinforced wooden structures, allowance for the influence of wood specific features as a building material allows us to evaluate its structural design as accurately as possible and ensure the required reliability and durability. Creep that causes wood deformations evolving in time can be referred to the specific properties of wood to a greater extent affecting the operation of the reinforced wooden structures. Taking into account the state of the issue to determine the effect of the long-acting loads on the stress-strain state of the reinforced glued wooden structures, the article considers the application of the theory of elastic heredity as the most applicable to assess the deformability of wooden structures in time. The conducted experimental and theoretical investigations and the reinforced glued wooden structures observations during the operational process have shown that their stress-strain state changes significantly under the load over time. Glue compositions used to connect reinforcement with wood ensure their reliable joint operation, however, as the result of the wood creep where wood is the basic material, the redistribution of forces between the reinforcement and wood occurs there on and off. At the same time normal stresses in the reinforcement and the glue joint “reinforcement - wood” increase in the calculated cross sections while they decrease in the wood, which is caused by a change (decrease) in the wood elastic modulus. Allowance for the wood creep in the design of the reinforced wooden structures will allow to determine the stress - strain state of the structure in the design more precisely. Therefore, when developing the reinforced wooden structures design standards, this factor must be taken into account.


Author(s):  
A. N. Koshmin ◽  
A. V. Zinoviev ◽  
A. Ya. Chasnikov ◽  
G. N. Grachev

The paper describes an extensive study of features peculiar to physical and mechanical processes occurring in metal in the deformation zone during the continuous extrusion of Cu-ETP rectangular busbars 10×60 mm in size. Finite element computer simulation was used to obtain the values of extrusion power parameters. It was noted that moment and force values increase to the point of filling the press chamber free space with metal reaching a maximum of 12.26 kN·m and 1.54 MN, respectively. The stress-strain state analysis of metal in the deformation zone made it possible to obtain distribution fields of accumulated plastic strain, strain rate intensity and average stresses, and to build the graph of metal temperature variation over time during extrusion. Maximum levels of accumulated plastic strain and compressive stresses are observed in the contact zone of the workpiece with the press container abutment. The most intense metal deformation heating also occurs there. The comparison of modeling and microstructural study results indicate that a significant portion of the cast structure grinding work occurs at the entrance to the deformation zone and at the abutment zone subjected to the highest level of compression stresses. Metal deformation during the die passage leads to an oriented crystal structure formed with a grain size of 25–30 μm. Sample hardness measurement results are consistent with the results of structure analysis in the studied areas of the deformation zone. When the workpiece passes through the compression container abutment section, deformation heating occurs, which leads to a decrease in hardness from 93 to 67 HV. After the metal passes through the die, recrystallization processes continue in it leading to a slight increase in grain size and, accordingly, a decrease in hardness from 79 to 74 HV, which continues until the busbar contacts a cooling medium.


2020 ◽  
Vol 2 (1) ◽  
pp. 207-214
Author(s):  
Vasyl Karpiuk ◽  
Yuliia Somina ◽  
Oksana Maistrenko ◽  
Fedir Karpiuk

AbstractThe paper deals with the working peculiarities of the support zones of reinforced concrete elements subject to bending with due account of the eccentric compression and tension. The authors performed simulation of the stress-strain behaviour of the indicated structures with the aid of “Lira” software which results are shown in the graphical and tabulated form. The performed simulation allowed of tracing the work of the studied sample beams till collapse. Such approach made it possible to single out and generalize the main collapse patterns of the inclined cross-sections of the reinforced concrete elements subject to bending on which basis the authors developed the improved method to calculate their strength (Karpiuk et al., 2019).


Sign in / Sign up

Export Citation Format

Share Document