deformation kinematics
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Viktor Matviychuk ◽  
Mykola Kolisnyk

The influence of rolling stamping on the service characteristics of products is investigated in the work. Based on the analysis of deformation kinematics, stress-strain state, microstructure and evaluation of deformability of workpiece material, ways to increase geometric accuracy, vacuum tightness, electrolytic stability and mechanical characteristics of product material, as well as ways to improve the material of workpieces for their subsequent processing. The influence of active friction forces on the nature of the material flow during SHO was established, which contributed to the development of new processes that allow to bring the shape and dimensions of the workpiece as close as possible to the finished part. Thus accuracy of the sizes of details corresponds to 7-11th qualities of accuracy, and roughness of the processed surfaces makes Ra = 2,5… 0,63 microns. The process of reshaping the square billets into round ones by the method of SHO is effective, which increases the utilization factor of the metal and reduces the anisotropy of its mechanical properties. The characteristic of flat anisotropy λr, adopted in sheet metal stamping as a characteristic of the ability of the material to form scallops, decreases as a result of reshaping by 70-80%. The relative difference in yield strength in the plane of the sheet decreases from 0.10-0.15 to 0.03-0.05. The ultimate tensile strain increases by 8-10%, and the uniform uniform strain - by 5-8%. This improvement in the characteristics of the material reshaped by rolling blanks leads to the fact that when drawing cylindrical products, the value of scallops decreases by 2-2.5 times, and the value of the maximum degree of drawing increases by 10-15%. This reduces the relative difference in wall thickness along the perimeter of the elongated workpiece, and the change in wall thickness along its height becomes linear. Thus, the use of SHO processes significantly improves the quality characteristics of products.


Solid Earth ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2735-2771
Author(s):  
Amir Kalifi ◽  
Philippe Hervé Leloup ◽  
Philippe Sorrel ◽  
Albert Galy ◽  
François Demory ◽  
...  

Abstract. After more than a century of research, the chronology of the deformation of the external part of the western Alpine belt (France) is still controversial for the Miocene epoch. In particular, the poor dating of the foreland basin sedimentary succession hampers a comprehensive understanding of the deformation kinematics. Here we focus on the Miocene molasse deposits of the northern subalpine massifs, southern Jura, Royans, Bas-Dauphiné, Crest, and La Bresse sedimentary basins through a multidisciplinary approach to build a basin-wide tectono-stratigraphic framework. Based on sequence stratigraphy constrained by biostratigraphical, chemostratigraphical (Sr isotopes), and magnetostratigraphical data between the late Aquitanian (∼ 21 Ma) and the Tortonian (∼ 8.2 Ma), the Miocene molasse chronostratigraphy is revised with a precision of ∼ 0.5 Ma. The Miocene molasse sediments encompass four different paleogeographical domains: (i) the oriental domain outlined by depositional sequences S1a to S3 (∼ 21 to ∼ 15 Ma), (ii) the median domain characterized by sequences S2 to S5 (∼ 17.8 to ∼ 12 Ma), (iii) the occidental domain in which sequences S2a to S8 (∼ 17.8 to ∼ 8.2 Ma) were deposited, and (iv) the Bressan domain where sedimentation is restricted to sequences S6 to S8 (∼ 12 to ∼ 8.2 Ma). A structural and tectono-sedimentary study is conducted based on new field observations and the reappraisal of regional seismic profiles, thereby allowing the identification of five major faults zones (FZs). The oriental, median, and occidental paleogeographical domains are clearly separated by FZ1, FZ2, and FZ3, suggesting strong interactions between tectonics and sedimentation during the Miocene. The evolution in time and space of the paleo-geographical domains within a well-constrained structural framework reveals syntectonic deposits and a westward migration of the depocenters, allowing for proposing the succession of three deformation phases at the western Alpine front. (i) The first is a compressive phase (P1) corresponding to thrusting above the Chartreuse oriental thrust (FZ1), which was likely initiated during the Oligocene and rooted east of Belledonne. This tectonic phase generated reliefs that limited the Miocene transgression to the east. (ii) The second is a ∼ WNW–ESE-directed compressive phase (P2) lasting between 18.05 ± 0.25 Ma and ∼ 12 Ma, with thrusts rooted in the Belledonne basal thrust. Thrusts were activated from east to west: the Salève (SAL) and Gros Foug (GF) thrusts and then successively FZ2, FZ3, FZ4, and FZ5. Along two WNW–ESE balanced cross sections the amount of horizontal shortening is of ∼ 6.3 to 6.7 km, corresponding to average shortening rates of ∼ 1.2 km Myr−1 and migration of the deformation toward the west at a rate of ∼ 2.9 km Myr−1. During ∼ 6 Myr, the Miocene Sea was forced to regress rapidly westwards in response to westward migration of the active thrusts and exhumation of piggyback basins atop the fault zones. Phase P2 thus deeply shaped the Miocene paleogeo-graphical evolution of the area and appears as a prominent compressive phase at the scale of the western Alps from the Swiss molasse basin to the Rhodano–Provencal one. (iii) The third is a ∼ 300 m phase of uplift in the Bas-Dauphiné (P3) of probable Tortonian age (∼ 10 Ma), which would have induced southward sea retreat and been coeval with the folding of the Jura in the north and possibly with back-thrusting east of the Chartreuse massif.


2021 ◽  
Vol 21 (3) ◽  
pp. 593-598
Author(s):  
S. Jena ◽  
A. Karakoti ◽  
V.R. Kar ◽  
K. Jayakrishna ◽  
M.T.H. Sultan

Deformation behavior of functionally graded bio- composite plate structures subjected to uniform pressure are examined and presented. Here, biocompatible metals/alloys and ceramics are utilized as constituent materials throughout in the analysis. The material properties of functionally graded bio- composite plate are evaluated through power-law distribution based Voigt’s micromechanical scheme. The displacement field is defined in third-order shear deformation mid-plane kinematics. However, the motion equations are governed by minimizing total potential energy. The deflection responses are obtained in finite element framework using nine noded quadrilateral element. To confirm the correctness of the present finite element model, the present results are compared with the reported results. In addition, various numerical illustrations are demonstrated to exhibit the significance of different geometrical and material parameters on the deformation behaviour of functionally graded bio-composite plate structure, and discussed in detail.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaofei Hu ◽  
Xianghe Ji ◽  
Xilin Cao ◽  
Jiuying Chen ◽  
Baotian Pan

The subsurface fault geometry is the base for understanding a process of crust deformation and mountain building. Based on kinematic models for fault-related folds, a geomorphic method is recently applied to estimate the subsurface fault geometry, while the validation on its reliability is lacking. In this study, we surveyed a suit of river terrace surfaces across an active fold at the north front of the Qilian Shan. According to the deformation geometry of the terraces, the fold deformation is interpreted by a listric fault fold model, and based on this kinematic model, the fault geometry underlying the fold is estimated. In comparison between the estimated fault geometry and a seismic reflection profile, we found that the decollement depth and the back thrust are highly consistent with each other. Although some small fault bends or internal shearing cannot be estimated solely by the terrace deformation, the overall fault geometry is successfully revealed by the terrace deformation. Using this fault geometry and the terrace dating results, the region deformation kinematics are re-evaluated, which suggest that the dip slip (in a rate of 1.8 ± 0.4 mm/a) along the decollement is mainly accommodated by two structures, one is the blind-back-thrust fault within the piggy basin in a dip-slip rate of 0.9 ± 0.3 mm/a and another is the thrust and fold at the west portion of the Yumu Shan range.


Geomorphology ◽  
2021 ◽  
pp. 107750
Author(s):  
Xilin Cao ◽  
Xiaofei Hu ◽  
Baotian Pan ◽  
Qiming Zhao ◽  
Tai'’an Chen ◽  
...  

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
N. Mehadi Khan ◽  
R. Suresh Kumar

AbstractThe present work is aimed at deriving a finite element model for active constraining layer damping treatment (ACLD) of layered skew plates by incorporating zig-zag behaviour using a Murakami zig-zag function (MZZF). The ACLD in skew patch form comprises of 1–3 PZC material and viscoelastic material in the layer form placed on substrate skew plate. The overall skew substrate ACLD system deformation kinematics are derived using MZZF and the equations of motion for the same are derived by virtual work method. A MATLAB subroutine for the overall skew plate ACLD system has been developed to present the closed loop frequency responses by successful implementation of closed-loop feedback system. The substrate skew plates with different lamination schemes namely symmetric/antisymmetric cross-ply and antisymmetric angle-ply are considered to assess the damping behavior of the skew plates undergoing ACLD. Also, the piezo-fiber angle (obliquely reinforced) variation of the PZC layer on the damping responses of the skew plates have been thoroughly examined.


2021 ◽  
Author(s):  
Amir Kalifi ◽  
Philippe-Hervé Leloup ◽  
Philippe Sorrel ◽  
Albert Galy ◽  
François Demory ◽  
...  

<p>The fact that the western Alps Miocene foreland basin succession is poorly dated impacts directly our understanding of the deformation kinematics of that part of the external part of the Alpine belt (France). Here we propose a multidisciplinary approach aiming at building a robust tectono-stratigraphic framework of the Miocene deposits at the basin scale (northern subalpine massifs, southern Jura, Royans, Bas-Dauphiné and La Bresse basins). Sr isotopes stratigraphy combined with magnetostratigraphy and biostratigraphy enable sequence stratigraphy subdivisions S1 to S8 between the Upper Aquitanian (-21 Ma) and the Tortonian (-9 Ma) dated with a precision <0.5 Ma. These results highlight four different palaeogeographical domains during the Miocene: (i) the oriental domain with depositional sequences S1a to S3 (~21.3 to 15Ma), (ii) the median domain, in which sequences S2, S3, S4 and S5 occurred (~17.8 to 14Ma), (iii) the occidental domain with sequences S2 to S8 (~17.8 to ~9.5Ma); and (iv) the Bressan domain, in which sequences S6 to S8 are found (~ 11.5 to ~9.5Ma).</p><p>This revised chronostratigraphy was complemented with a structural and tectono-sedimentary study based on new fieldwork data and a reappraisal of regional seismic profiles, allowing to highlight five major faults zones (FZ). It appears that the oriental, median and occidental paleogeographical domains are delineated by FZ1, FZ2 and FZ3, therefore suggesting a strong interplay between tectonics and sedimentation. Evidences of syntectonic deposits and a westward migration of the depocenters impart the following deformation chronology : a Oligocene compressive phase (P1) corresponding to thrusting above FZ1 rooted east (above) Belledonne, which generated reliefs that limited the early Miocene transgression to the east; an Early- to Middle Miocene W-WNW/E-ESE-directed compressive phase (P2) involving the Belledonne massif basal thrust, which between 18.05 +/- 0.15 Ma and 12Ma successively activated the Salève thrust fault, and the FZ2 to FZ5 from east to west. P2 deeply impacted the Miocene palaeogeographical evolution by a rapid westward migration of depocenters in response to the exhumation of piggy-back basins above the growing fault zones; a last Tortonian phase (P3), less well constrained, apparently implied a significant uplift in the subalpine massifs, combined with the activation of the frontal Jura thrust.</p>


Sign in / Sign up

Export Citation Format

Share Document