scholarly journals Nonparametric control algorithm for metal temperature mode on site BOF – CCM

2021 ◽  
Vol 64 (6) ◽  
pp. 447-457
Author(s):  
M. E. Kornet ◽  
A. V. Raskina ◽  
A. A. Korneeva

A two-level control system for the temperature mode of smelting, out-of-furnace processing and preparation for casting of low-carbon steel G/ET is proposed in the conditions of BOF shop-2 of JSC “United West Siberian Metallurgical Combine”. Depending on the technological scheme, it is possible to design various control systems for the steelmaking complex with sequential, parallel and combined inclusion of individual operations and processes. The control system of a sequential group of objects is considered on the example of steel G/ET. The control system includes an external control loop that allows coordinated control of the shop departments by optimizing the mode of technological process conducting at the facility, taking into account the actual operation performed at the previous facility. The implemented nonparametric algorithm of dual control allows the decision-maker to perform joint operational adjustment of control actions for local control loops. The temperature mode of the melts of low-carbon steel G/ET is analyzed and it is revealed that the processing time of the steel ladle at each stage of the BOF – CCM technological route has a significant impact on the steel temperature mode. In accordance with this, the criteria for temperature control quality are formed. The results of computational experiment showed that the introduction of a control unit with a decision-maker contributes to the rational control of metal temperature mode in the BOF – CCM site, and as a result, obtaining a given chemical composition and temperature of steel within narrower limits. It allows one to eliminate deviations from the contact schedule of the main units, and to increase the number of melts in the series and the rate of continuous casting.

1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

Author(s):  
Natalia Gonçalves Torres ◽  
Vinícius Rodrigues ◽  
Edgar Mamiya

2014 ◽  
Vol 2 (1) ◽  
pp. 59-76
Author(s):  
Abdullah Daie'e Assi

This research deals with the choice of the suitable filler metal to weld the similar and dissimilar metals (Low carbon steel type A516 & Austenitic stainless steel type 316L) under constant conditions such as, plate thickness (6 mm), voltage (78 v), current (120 A), straight polarity. This research deals with three major parts. The first parts Four types of electrodes were used for welding of dissimilar metals (C.St A516 And St.St 316L) two from mild steel (E7018, E6013) and other two from austenitic stainless steel (E309L, E308L) various inspection were carried out include (Visual T., X-ray T., δ- Ferrite phase T., and Microstructures T.) and mechanical testing include (tensile T., bending T. and micro hardness T.) The second parts done by used the same parameters to welding similar metals from (C.St A516) Or (St.St 316L). The third parts deals with welding of dissimilar weldments (C.St And St.St) by two processes, gas tungsten are welding (GTAW) and shielded metal are welding (SMAW).        The results indicated that the spread of carbon from low carbon steel to the welding zone in the case of welding stainless steel elect pole (E309L) led to Configuration Carbides and then high hardness the link to high values ​​compared with the base metal. In most similar weldments showed hardness of the welding area is  higher than the hardness of the base metal. The electrode (E309L) is the most suitable to welding dissimilar metals from (C.St A516 With St.St 316L). The results also showed that the method of welding (GTAW) were better than the method of welding (SMAW) in dissimilar welded joints (St.St 316L with C.St A516) in terms of irregular shape and integrity of the welding defects, as well as characterized this weldments the high-lift and resistance ductility good when using the welding conditions are similar.


2015 ◽  
Vol 57 (7-8) ◽  
pp. 680-684 ◽  
Author(s):  
Tolga Mert ◽  
Nurullah Gultekin ◽  
Ahmet Karaaslan

Sign in / Sign up

Export Citation Format

Share Document