scholarly journals Hydrothermal Minerals Mapping using based on Remotely Sensed Data from Sentinel 2 Sattelite: a Case Study in Vinh Phuc Province, Northern Vietnam

2020 ◽  
Vol 4 (4) ◽  
pp. 309-317
Author(s):  
Le Hung Trinh

This paper presents the experiences obtained in the application of Principal Component Analysis (PCA) method to map hydrothermal minerals based on remotely sensed data. In this study, Sentinel-2B MultiSpectral Instrument (MSI) image is used to detect distribution of hydroxyl-bearing minerals in Vinh Phuc province, northern Vietnam. Four bands of Sentinel-2B image including blue band (band 2), Vegetation Red Edge band (band 8A) and SWIR bands (band 11 and 12) are used to calculate the Principal Components, then and then select the Principal Component, which containing provides information on the hydrothermal minerals information. The obtained results findings show that the methodology and data are effective in detecting and mapping hydrothermal mineralization.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3982
Author(s):  
Giacomo Lazzeri ◽  
William Frodella ◽  
Guglielmo Rossi ◽  
Sandro Moretti

Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth.


2020 ◽  
Vol 11 (4) ◽  
pp. 126-143
Author(s):  
Terpsichori MITSI ◽  
◽  
Demetre ARGIALAS ◽  
Konstantinos VAMVOUKAKIS ◽  
◽  
...  

Because of climate change and overpopulation, the demand for water is increasing. Groundwater constitutes an alternative renewable source of aquifer, so the spatial distribution of ground water provides important information on its qualitative and quantitative status. This paper develops a methodology for delineating potential ground water zones using remotely sensed data and GIS. The developed methodology was based on the empirical index GPI (MGPI – Modified Groundwater Potential Index) and was applied to the eastern part of Lesvos Island, Greece. To evaluate the criteria used for the result, the Analytic Network Process (ANP) was applied to weight each parameter. The dataset used consists of satellite images derived from Sentinel 2 and Landsat 8, which were combined with vector and raster data, to create the necessary thematic layers. To validate the results, existing ground water zones from the Municipal Water Company of Lesvos were used.


2008 ◽  
Vol 134 (5) ◽  
pp. 533-540 ◽  
Author(s):  
N. G. Wright ◽  
I. Villanueva ◽  
P. D. Bates ◽  
D. C. Mason ◽  
M. D. Wilson ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 279 ◽  
Author(s):  
Ernest William Mauya ◽  
Joni Koskinen ◽  
Katri Tegel ◽  
Jarno Hämäläinen ◽  
Tuomo Kauranne ◽  
...  

Remotely sensed assisted forest inventory has emerged in the past decade as a robust and cost efficient method for generating accurate information on forest biophysical parameters. The launching and public access of ALOS PALSAR-2, Sentinel-1 (SAR), and Sentinel-2 together with the associated open-source software, has further increased the opportunity for application of remotely sensed data in forest inventories. In this study, we evaluated the ability of ALOS PALSAR-2, Sentinel-1 (SAR) and Sentinel-2 and their combinations to predict growing stock volume in small-scale forest plantations of Tanzania. The effects of two variable extraction approaches (i.e., centroid and weighted mean), seasonality (i.e., rainy and dry), and tree species on the prediction accuracy of growing stock volume when using each of the three remotely sensed data were also investigated. Statistical models relating growing stock volume and remotely sensed predictor variables at the plot-level were fitted using multiple linear regression. The models were evaluated using the k-fold cross validation and judged based on the relative root mean square error values (RMSEr). The results showed that: Sentinel-2 (RMSEr = 42.03% and pseudo − R2 = 0.63) and the combination of Sentinel-1 and Sentinel-2 (RMSEr = 46.98% and pseudo − R2 = 0.52), had better performance in predicting growing stock volume, as compared to Sentinel-1 (RMSEr = 59.48% and pseudo − R2 = 0.18) alone. Models fitted with variables extracted from the weighted mean approach, turned out to have relatively lower RMSEr % values, as compared to centroid approaches. Sentinel-2 rainy season based models had slightly smaller RMSEr values, as compared to dry season based models. Dense time series (i.e., annual) data resulted to the models with relatively lower RMSEr values, as compared to seasonal based models when using variables extracted from the weighted mean approach. For the centroid approach there was no notable difference between the models fitted using dense time series versus rain season based predictor variables. Stratifications based on tree species resulted into lower RMSEr values for Pinus patula tree species, as compared to other tree species. Finally, our study concluded that combination of Sentinel-1&2 as well as the use Sentinel-2 alone can be considered for remote-sensing assisted forest inventory in the small-scale plantation forests of Tanzania. Further studies on the effect of field plot size, stratification and statistical methods on the prediction accuracy are recommended.


Sign in / Sign up

Export Citation Format

Share Document