scholarly journals KARAKTERISASI RADIONUKLIDA PADA BAHAN BAKAR BEKAS DARI EXPERIMENTAL PEBBLE BED REACTOR

Author(s):  
Aisyah Aisyah ◽  
Mirawaty Mirawaty ◽  
Dwi Luhur Ibnu Saputra ◽  
Risdiyana Setiawan

KARAKTERISASI RADIONUKLIDA PADA BAHAN BAKAR NUKLIR BEKAS DARI EXPERIMENTAL PEBBLE BED REACTOR. Arbeitsgemeinschaft Versuchsreaktor (AVR) merupakan reaktor nuklir jenis High Temperature Gas Cooled Reactor (HTGR) yang menggunakan bahan bakar berbentuk pebble berlapis TRISO dengan tipe yang sama  dengan Reaktor Daya Eksperimental (RDE) yang direncanakan akan dibangun di Indonesia. Oleh karena itu karakteristik radionuklida dalam bahan bakar bekas (BBNB) reaktor AVR dapat digunakan untuk mempelajari karakteristik BBNB reaktor RDE. Salah satu hal penting dalam operasional reaktor nuklir adalah pengelolaan BBNB yang ditimbulkannya. Pengelolaan BBNB reaktor AVR dilakukan dengan penyimpanan dalam dry cask untuk jangka waktu yang lama. Upaya untuk mendisain keselamatan dalam sistem penyimpanan BBNB salah satu kajian penting yang diperlukan adalah karakterisasi radionuklida yang terkandung dalam BBNB. Pada penelitian ini dilakukan karakterisasi radionuklida yang terkandung dalam BBNB dengan menggunakan software ORIGEN 2.1 yang didasarkan pada operasional reaktor AVR. Penelitian ini bertujuan untuk analisis keselamatan penyimpanan BBNB pebble pada dry cask dalam jangka panjang. Hasil penelitian menunjukkan bahwa sampai dengan waktu penyimpanan selama 100 tahun, BBNB sebuah pebble memiliki karakteristik radionuklida hasil aktivasi, aktinida dan anak luruhnya, serta radionuklida hasil fisi dengan total konsentrasi aktivitas sebesar 4,03x1010 Bq/g. Sampai dengan waktu penyimpanan 100 tahun konsentrasi aktivitas radionuklida total dalam dry cask sebesar 7,66x1013 Bq/g untuk kapasitas dry cask yang berisi BBNB pebble berjumlah 1900 buah. Terdapat BBNB pebble dalam dry cask yang mengalami kerusakan pada lapisan TRISO, sehingga dalam  dry cask kemungkinan terdapat beberapa radionuklida hasil fisi yang dapat lepas dari BBNB  seperti 85Kr, 135Xe, dan 131I yang berupa gas, serta  137Cs,106Ru, 110mAg dan 107Pd yang bersifat logam.Kata kunci: Karakterisasi radionuklida, AVR, bahan bakar nuklir bekas, pebble berlapis TRISO

Author(s):  
Geoffrey J. Peter

High Temperature Gas Cooled Reactor (HTGR) development and operation is expanding in the United Kingdom, Russia, USA (Generation IV Reactors), and France (Pebble Bed Modular Reactor, PBMR). A prototype pebble bed reactor producing 10 MW thermal, High Temperature Reactor (HTR-10) is in operation in China. However, the general public remains skeptical of the safety and the perceived dangers of possible accidents. Of particular concern are blockages caused by local variations in flow and heat transfer that lead to hot spots within the bed. This paper models the accident scenario resulting from blockages due to the retention of dust in the coolant gas or from the rupture of one or more fuel particles used in the High Temperature Gas Cooled (Pebble Bed) Nuclear Reactors using the commercially available computer code COMSOL. Numerical modeling of flow and heat transfer in a packed bed produces an Elliptical Non-Linear Partial Differential equation that requires custom made computer codes. Previously published results obtained from the use of a custom-made verified computer code are limited to one accident scenario and involve considerable modification to study different accident scenarios. Thus the use of a commercially available computer code that can simulate many different accident scenarios is of considerable advantage. Further, this paper compares numerical solutions obtained from custom-made computer code with COMSOL simulation and discusses the advantages and limitations of both codes.


Author(s):  
Walter Jaeger ◽  
H. J. Hamel ◽  
Heinz Termuehlen

The gas-cooled reactor design with spherical fuel elements, referred to as high-temperature gas-cooled reactors (HTGR or HTR reactors) or pebble bed reactors has been already suggested by Farrington Daniels in the late 1940s; also referred to as Daniels’ pile reactor design. Under Rudolf Schulten the first pebble bed reactor, the 46MWth AVR Juelich reactor (Atom Versuchs-Reactor Jülich) was built in the late 1960s. It was in operation for 22 years and extensive testing confirmed its inherent safety.


Author(s):  
Joseph P. Yurko ◽  
Katrina M. Sorensen ◽  
Andrew Kadak ◽  
Xing L. Yan

This paper describes the experimental validation of a proposed method that uses a small amount of helium injection to prevent the onset of natural circulation in high temperature gas reactors (HTGR) following a depressurized loss of coolant accident. If this technique can be shown to work, air ingress accidents can be mitigated. A study by Dr. Xing L. Yan et al. (2008) developed an analytical estimate for the minimum injection rate (MIR) of helium required to prevent natural circulation. Yan’s study used a benchmarked CFD model of a prismatic core reactor to show that this method of helium injection would impede natural circulation. The current study involved the design and construction of an experimental apparatus in conjunction with a CFD model to validate Yan’s method. Based on the computational model, a physical experimental model was built and tested to simulate the main coolant pipe rupture of a Pebble Bed Reactor (PBR), a specific type of HTGR. The experimental apparatus consisted of a five foot tall, 2 inch diameter, copper U-tube placed atop a 55-gallon barrel to reduce sensor noise from outside air movement. Hot and cold legs were simulated to reflect the typical natural circulation conditions expected in reactor systems. FLUENT was used to predict the diffusion and circulation phases. Several experimental trials were run with and without helium injection. Results showed that with minimal helium injection, the onset of natural circulation was prevented which suggests that such a method may be useful in the design of high temperature gas reactors to mitigate air ingress accidents.


Author(s):  
Zhifeng Li ◽  
Liangzhi Cao ◽  
Hongchun Wu ◽  
Chenghui Wan ◽  
Tianliang Hu

In the pebble-bed high temperature gas-cooled reactor, there exist randomly located TRISO coated fuel particles in the pebbles and randomly located pebbles in the core, which is known as the double stochastic heterogeneity. In the previous research, the regular lattice pattern was used to approximately simulate the pebble unit cells because the difficulties in modeling the randomly located TRISO geometric. This work aimed at to quantify the stochastic effect of high-temperature gas cooled pebble-bed reactor unit cells, and in view of the strong ability to carry out the accurate simulation of random media, the implicit particle fuel model of Monte Carlo method is applied to analyze to the difference between regular distribution and random distribution. Infinite multiplication factors of the pebble-bed reactor unite cells were calculated by the implicit particle fuel model and simple cube regular lattice pattern at different TRISO packing factor from 0.5%–50%. The results showed that the simple cube regular lattice pattern underestimates the infinite multiplication factors for most packing fractions, but overrates the infinite multiplication factors when the packing fraction is very low.


2018 ◽  
Vol 20 (3) ◽  
pp. 159
Author(s):  
Andi Sofrany Ekariansyah ◽  
Surip Widodo ◽  
Hendro Tjahjono ◽  
Susyadi Susyadi ◽  
Puradwi Ismu Wahyono ◽  
...  

High Temperature Gas Cooled Reactor (HTGR) is a high temperature reactor type having nuclear fuels formed by small particles containing uranium in the core. One of HTGR designs is Pebble Bed Reactor (PBR), which  utilizes helium gas flowing between pebble fuels in the core. The PBR is also the similar reactor being developed by Indonesia National Nuclear Energy Agency (BATAN) under the name of the Reaktor Daya Eksperimental (RDE) or Experimental Power Reactor (EPR) started in 2015. One important step of the EPR program is the completion of the detail design document of EPR, which should be submitted to the regulatory body at the end of 2018. The purpose of this research is to present preliminary results in the core temperature distribution in the EPR using the RELAP5/SCDAP/Mod3.4 to be complemented in the detail design document. Methodology of the calculation is by modelling the core section of the EPR design according to the determined procedures. The EPR core section consisting of the pebble bed, outlet channels, and hot gas plenum have been modelled to be simulated with 10 MWt. It shows that the core temperature distribution under assumed model of 4 core zones is below the limiting pebble temperature of 1,620 °C with the highest pebble temperature of 1,477.0 °C. The results are still preliminary and requires further researches by considering other factors such as more representative radial and axial power distribution, decrease of core mass flow, and heat loss to the reactor pressure vessel.Keywords: Pebble bed, core temperature, EPR, RELAP5 ANALISIS AWAL DISTRIBUSI TEMPERATUR TERAS REAKTOR DAYA EKSPERIMENTAL MENGGUNAKAN RELAP5. High Temperature Gas Cooled Reactor (HTGR) adalah reaktor tipe temperatur tinggi yang memiliki bahan bakar nukir dalam bentuk bola-bola kecil yang mengandung uranium. Salah satu desain HTGR adalah reaktor pebble bed (Pebble bed reactor/PBR) yang memanfaatkan gas helium sebagai pendingin yang mengalir di celah-celah bahan bakar bola di dalam teras. PBR juga merupakan tipe reaktor yang sedang dikembangkan oleh BATAN dengan nama reaktor daya eksperimental (RDE) yang dimulai pada 2015. Salah satu tahapan penting dalam program RDE adalah penyelesaian dokumen desain rinci yang harus dikirimkan ke badan pengawas pada akhir 2018. Tujuan penelitian adalah untuk menyajikan hasil-hasil awal pada distribusi temperatur di teras RDE menggunakan RELAP5/SCDAP/Mod3.4  sehingga dapat melengkapi isi dokumen desain rinci. Metode perhitungan adalah dengan memodelkan bagian teras RDE sesuai hasil penelitian sebelumnya.  Bagian teras RDE yang dimodelkan terdiri dari pebble bed, kanal luaran, dan plenum gas bawah yang disimulasikan pada daya 10 MWt. Hasil simulasi menunjukkan bahwa distribusi temperatur teras dengan asumsi pembagian 4 zona teras mendapatkan temperatur tertinggi sebesar 1477 °C yang masih di bawah batasan temperatur di bola bahan bakar yaitu 1620 °C. Hasil yang diperoleh masih estimasi awal dan membutuhkan penelitian lebih lanjut dengan mempertimbangkan faktor-faktor lainnya seperti distribusi daya aksial dan radian yang lebih representatif, pengurangan aliran teras, dan kehilangan panas teras yang diserap oleh bejana reaktor.Kata kunci: Pebble bed, temperatur teras, RDE, RELAP5


1987 ◽  
Vol 97 (1) ◽  
pp. 72-88 ◽  
Author(s):  
F. Schürrer ◽  
W. Ninaus ◽  
K. Oswald ◽  
R. Rabitsch ◽  
Hj. Müller ◽  
...  

2019 ◽  
Vol 1 (3) ◽  
pp. 159-176 ◽  
Author(s):  
Shengyao Jiang ◽  
Jiyuan Tu ◽  
Xingtuan Yang ◽  
Nan Gui

Sign in / Sign up

Export Citation Format

Share Document