scholarly journals Estimation of radon potential through measurement of uranium concentrations in granite geology

2019 ◽  
Vol 115 (7/8) ◽  
Author(s):  
Jacques Bezuidenhout

The geology of an area can be used as a predictor for radon potential. Granite rock typically contains a high concentration of uranium and subsequent elevated emanation of radon gas. The geology of the western part of the Western Cape Province in South Africa is dominated by granite bedrock but very few studies on radon have been conducted in this area. Uranium concentrations were consequently measured on a large granite hill in the Saldanha Bay area of the Western Cape and a relationship between indoor radon and uranium concentrations was used to model radon potential on the outcrop. Results from granite rich environments in India were modelled in order to extract a relationship between indoor radon concentrations, radon exhalation rates and uranium concentrations. Radon exhalation rates greater than 0.35 Bq/m2h were predicted and estimated indoor radon concentrations in excess of 400 Bq/m3 were also predicted for the hill. The modelled results were compared with indoor radon measurements taken in the town of Paarl in the Western Cape, which sits on the same granite bedrock formation. The predicted radon potential correlated well with the physical measurements.

2020 ◽  
Author(s):  
Meabh Hughes ◽  
Quentin Crowley

<p>Radon is a radioactive gas which emanates from rock, soil and water. Radon concentrations in the<br>atmosphere are generally very low (typically <5 Bq m-3), however it can occur at much higher levels<br>in soil (typically 10’s-100’s kBq m-3), or enclosed spaces such as buildings and caves (typically 10’s-<br>100’s Bq m-3). Exposure to radon and its daughter products is associated with an elevated risk of<br>developing lung cancer. Ireland has a population weighted indoor radon concentration of 98 Bq m-3<br>resulting in an estimated 300 annual lung cancer cases per year, representing approximately 12% of<br>the annual lung cancer cases. A national-scale legislative radon-risk map has a 10 x 10 km spatial<br>resolution and is based exclusively on indoor radon measurements (i.e. it does not contain any<br>geological information). The legislative map satisfies the European Council Directive<br>2013/59/EURATOM Basic Safety Standard, in that it defines “high radon” areas as those where >10%<br>of homes are estimated to exceed the national reference level of 200 Bq m-3. New buildings in such<br>areas are legally required to have a barrier, with low radon permeability installed.</p><p>This research focuses on a karstic region of SE Ireland, which features some exceptionally high<br>indoor radon concentrations (65,000 Bq m-3), even though it is not classified as a “high radon” area<br>on the national legislative map. Here we demonstrate the use of measuring sub-soil radon<br>concentrations and sub-soil permeability, in order to construct a radon potential (RP) map of the<br>area. Extremely high sub-soil radon concentrations (>1443 kBqm-3) and radon potential values<br>(>200) are spatially associated with Namurian shales, interbedded with limestone. Overall, we<br>classify the study area as high radon potential (RP >35) using this technique. We suggest all areas<br>underlain by Namurian shales in Ireland should undergo similar radon potential mapping, and if<br>necessary, should be re-designated as “high radon” areas. If deemed appropriate (i.e. where RP<br>>35), such a designation will help to protect the general public from the harmful effects of indoor<br>radon exposure, and will help to lower the incidence of radon-related lung cancer in these areas.</p>


2016 ◽  
Vol 31 (3) ◽  
pp. 277-281
Author(s):  
Amit Kumar ◽  
Pal Chauhan

A radon exhalation study for building materials was carried out by closed accumulator technique using plastic track detector LR-115 type-II, taking into account the effect of back diffusin. The back diffusion of radon into the materials causes an underestimate of free exhalation rates. The results showed that radon exhalation rates of soil, sand, brick powder, and crasher were found to be high as compared to rice husk ash, wall putty, and plaster of Paris. The radon exhalation rates from building materials varied from 0.45 ? 0.07 mBq/kgh to 1.55 ? 0.2 mBq/kgh and 3.4 ? 0.7 mBq/m2h to 28.6 ? 3.8 mBq/m2h as measured without considering back diffusion. The radon exhalation rates of building materials oblivious of back diffusion varied from 4.3 ? 0.8 mBq/m2h to 44.1 ? 5.9 mBq/m2h. The radon exhalation rates from building materials can be used for estimation of radon wall flux and indoor radon concentration. Thus, it is necessary to make correction in the measured exhalation rates by back diffusion.


2021 ◽  
Author(s):  
Chiara Coletti ◽  
Giancarlo Ciotoli ◽  
Eleonora Benà ◽  
Erika Brattich ◽  
Giorgia Cinelli ◽  
...  

<p>In the volcanic area of the Euganean Hills district (100 km<sup>2</sup>), the indoor radon often exceeds the threshold level of 300 Bq/m<sup>3 </sup>stipulated by the Council Directive 2013/59/Euratom, thus suggesting the need to investigate the possible link between observed radon concentrations and the local geology (Trotti et al., 1998,1999; Strati et al., 2014). More recently, statistical and geostatistical analysis on rock samples identified high U, Th and K concentrations associated with areas characterised by trachyte and rhyolite lithologies (Tositti et al., 2017). With this contribution, we completed our investigation on the natural radioactivity in the Euganean Hills district extending the rocks dataset, performing on-site soil gas survey, and considering other important factors which can locally increase the radon occurrence, such as hydrothermal alterations, types of soils (e.g., geochemistry or presence of organic matters), and faults. Furthermore, we elaborated a Geogenic Radon Potential map to assess the local spatial relationships between the measured soil gas radon concentrations and seven proxy-variables: fault density (FD), total gamma radiation dose (TGDR), <sup>220</sup>Rn (Tn), digital terrain mode (SLOPE), moisture index (MI), heat load index (HLI) and soil permeability (PERM). Empirical Bayesian Regression Kriging (EBRK) was used to develop the most accurate hazard map of the considered area, thus, providing the local administration an up-to-date decisional tool for the land use planning. For the high radon emission measured, the high density of dwelling, and its geomorphological features, the Euganean Hills district represented a very meaningful case of study.  </p><p> </p><p>Trotti, F., Tanferi, A., Lanciai, M., Mozzo, P., Panepinto, V., Poli, S., Predicatori, F., Righetti, F., Tacconi, A., Zorzine, R., 1998. Mapping of areas with elevated indoor radon levels in Veneto. Radiat. Prot. Dosim. 78 (1), 11–14.</p><p>Trotti, F., Tanferi, A., Bissolo, F., Fustegato, R., Lanciai, M., Mozzo, P., Predicatori, F., Querini, P., Righetti, F., Tacconi, A., 1999. A Survey to Map Areas with Elevated Indoor Radon Levels in Veneto, Radon in the Living Environment, 19-23 April 1999, Athens, Greece, 859–868.</p><p>Strati V., Baldoncini M., Bezzon G.P, Broggini C., Buso G.P., Caciolli A., Callegari I., Carmignani L, Colonna T, Fiorentini G., Guastaldi E., Kaçeli Xhixhaf M., Mantovani F, Menegazzo R., Moub L., Rossi Alvarez C., Xhixha G., Zanon A., 2014. Total natural radioactivity, Veneto (Italy). Journal of Maps, Vol. 11, Issue 4, 545–551. http://doi.org/10.1080/17445647.2014.923348.</p><p>Tositti L., Cinelli G., Brattich E., Galgaro A., Mostacci D., Mazzoli C., Massironi M., Sassi R., 2017. Assessment of lithogenic radioactivity in the Euganean Hills magmatic district (NE Italy). J. Environ. Radioact. 166, 259–269. https://doi.org/10.1016/j.jenvrad.2016.07.011</p>


1988 ◽  
Vol 24 (1-4) ◽  
pp. 367-370 ◽  
Author(s):  
E. Stranden ◽  
T. Strand

Abstract Alum shale is known to contain enhanced levels of radium, and may thus be a source of enhanced radon concentrations. The Hedemarken area in the south-eastern part of Norway has, due to its high geological occurrence of alum shale, been the subject of an extensive study on indoor radon. Measurements of the activity concentration of soil and shale, radon exhalation from the ground and from geological samples, are reported, together with measurements of indoor radon concentrations in about 200 houses. In about 70 houses, the radon concentration exceeded 400 Bq.m-3, and the highest concentration (mean value for a house) was 5300 Bq.m-3. Radon exhalation measurements from the ground suggest that the alum shale areas generally should be classified as high radon risk areas.


1994 ◽  
Vol 56 (1-4) ◽  
pp. 215-219 ◽  
Author(s):  
A.V. Nero ◽  
S.M. Leiden ◽  
D.A. Nolan ◽  
P.N. Price ◽  
S. Rein ◽  
...  

Abstract A methodology is being developed for identifying 'high radon' areas by correlating actual indoor levels with local soil, housing, and meteorological data. In preliminary multiple regression analyses using 'screening' indoor radon data from Minnesota, radium concentrations from aerial surveys, and information derived from a state soils map, indicate country geometric mean (GM) radon concentrations with an R2 of approximately 0.5, Furthermore, these data have even greater underlying predictive power, considering the substantial variability in GMs arising from the small numbers of homes monitored in most counties. This suggests that most of the variability of actual indoor radon concentrations from one area to another can be predicted quantitatively based on a correlation analysis between suitable indoor monitoring data and physical data on soils and other factors. This contrasts with methods for mapping the radon 'potential' that provide indicators of indoor concentrations without quantifying their relationship to actual indoor levels.


Sign in / Sign up

Export Citation Format

Share Document