scholarly journals A Plant Pathologist on Wheat Breeding with Special Reference to Septoria Diseases

2011 ◽  
Vol 40 (No. 2) ◽  
pp. 63-71
Author(s):  
C. Zadoks J

This review has a personal, plant pathologist’s outlook on plant breeding. It touches upon some generalities, among which the “three stages” of plant breeding, participatory plant breeding and biotechnology in plant breeding. It delves deep into modern molecular studies on leaf blotch (anamorph Septoria tritici) and glume blotch (anamorph Septoria nodorum) of wheat. Epidemiological knowledge of the teleomorphs Mycosphaerella graminicola and Stagonospora nodorum has progressed with great strides. Consequences for applied plant breeding slowly become visible.  

1980 ◽  
Vol 20 (102) ◽  
pp. 94 ◽  
Author(s):  
JS Brown ◽  
RG Paddick

The severity of speckled leaf blotch (Mycosphaerella graminicola (Fuckel) Schroeter, Septoria tritici Rob. ex Desm.) in wheat crops was surveyed in the Wimmera during the 1974-77 seasons and in all the major wheat growing areas of Victoria in 1978. Speckled leaf blotch was found in all crops and the severity varied greatly within and between seasons. The average percentage of affected area on the penultimate leaf of main tillers was 24%, 28%, 1.5%, 0% and 9.4%, respectively, for the successive seasons. The corresponding grain yield losses were estimated at 19, 21, 5, 0 and 12% by using an experimentally derived relation between yield loss and disease severity. In 1978, glume blotch (Leptosphaeria nodorum (Miiller, Septoria nodorum (Berk.) Berk.), stem rust (Puccinia graminis Pers. f sp. tritici Erikss and Henn.), leaf rust (Puccinia recondita Rob. ex Desm. f sp, tritici Erikss) and powdery mildew (Erysiphe graminis DC. f sp. tritici E. Marchal) occurred in 8%, 3%, 1% and 0.5%, respectively, of the crops sampled. These surveys have shown speckled leaf blotch to be the most important foliar disease of wheat in Victoria.


2013 ◽  
Vol 55 (1) ◽  
pp. 233-246
Author(s):  
Ewa Mirzwa-Mróz ◽  
Czesław Zamorski

The response of Polish winter wheat genotypes to <i>M.graminicola</i> (preliminary experiments and cultivar collections) was observed in different regions of Poland. Observations were carried out in 1995-1999. The winter wheat genotypes showed a broad spectrum of reaction to this pathogen. Between 1997 and 1999 the highest degree of infection on winter wheat breeding lines was noted in Kończewice. During this time no genotypes free from infection were observed (preliminary breeding experiments). Cultivars with no symptoms of <i>Septoria tritici</i> blotch (Leszczyńska Wczesna and Żelazna) were found among old genotypes in Słupia Wielka only in earlier experiments (1995-1996). In the years 1997-1999 the winter wheat cultivars were classified into groups on the basis of their response to the pathogen. The degree of infection for the majority cultivars was quite high.


2005 ◽  
Vol 42 (5) ◽  
pp. 376-389 ◽  
Author(s):  
John Keon ◽  
John Antoniw ◽  
Jason Rudd ◽  
Wendy Skinner ◽  
John Hargreaves ◽  
...  

2013 ◽  
Vol 57 (1-2) ◽  
pp. 119-129
Author(s):  
Barbara Majchrzak ◽  
Tomasz P. Kurowski ◽  
Adam Okorski

The research was conduced in the years 2000-2002. The aim of the research was to determinate the health of leaves and ears of spring wheat cultivated after spring cruciferae plants such as: spring oilseed rape (<i>Brassica napus</i> ssp. <i>oleiferus</i> Metz.), chiiiese mustard (<i>Brassica juncea</i> L.), white mustard (<i>Sinapis alba</i> L.), ole iferous radish (<i>Raphanus sativus</i> var. <i>oleiferus</i> L.), false flax (<i>Camelina sativa</i> L.), crambe (<i>Crambe abbysinica</i> Hoechst.), as well as after oat (<i>Avena sativa</i> L.) as con trol. Spring wheat cv. Torka was sown after: pIoughed stubble cultivated on this field, ploughed stubble and straw, ploughed stubble with straw and 30 kg nitrogen per hectare. During all the years of studies on leaves and ears of spring wheat septo ria of leaf blotch and glume blotch (<i>Mycosphaerella graminicola, Phaeosphaeria nodorum</i>) were found. Brown rust (<i>Puccinia recondita</i> f. sp. <i>tritici</i>) was seen on leaves of wheat only during years 2001-2002. Besides on ears fusarium ear blight (Fusarimn sp.) was present in 2002 and sooty mould (<i>Cladosporium sp., Alternaria</i> sp.) in 2001. According to health of overground parts of plants the good forecrops to spring wheat were oat, chinese mustard, oleiferous radish. The biggest impact on presence of diseases of leaves and ears had the weather during years of studies. The use of after harvest rests didn't have significant influence on health of leaves and ears of spring wheat.


2020 ◽  
Vol 158 (2) ◽  
pp. 315-333 ◽  
Author(s):  
Marja Jalli ◽  
Janne Kaseva ◽  
Björn Andersson ◽  
Andrea Ficke ◽  
Lise Nistrup-Jørgensen ◽  
...  

Abstract Fungal plant diseases driven by weather factors are common in European wheat and barley crops. Among these, septoria tritici blotch (Zymoseptoria tritici), tan spot (Pyrenophora tritici-repentis), and stagonospora nodorum blotch (Parastagonospora nodorum) are common in the Nordic-Baltic region at variable incidence and severity both in spring and winter wheat fields. In spring barley, net blotch (Pyrenophora teres), scald (Rhynchosporium graminicola, syn. Rhynchosporium commune) and ramularia leaf spot (Ramularia collo-cygni) are common yield limiting foliar diseases. We analysed data from 449 field trials from 2007 to 2017 in wheat and barley crops in the Nordic-Baltic region and explored the differences in severity of leaf blotch diseases between countries and years, and the impact of the diseases on yield. In the experiments, septoria tritici blotch dominated in winter wheat in Denmark and southern Sweden; while in Lithuania, both septoria tritici blotch and tan spot were common. In spring wheat, stagonospora nodorum blotch dominated in Norway and tan spot in Finland. Net blotch and ramularia leaf blotch were the most severe barley diseases over large areas, while scald occurred more locally and had less yield impact in all countries. Leaf blotch diseases, with severity >50% at DC 73–77, caused an average yield loss of 1072 kg/ha in winter wheat and 1114 kg/ha in spring barley across all countries over 5 years. These data verify a large regional and yearly variation in disease severity, distribution and impact on yield, emphasizing the need to adapt fungicide applications to the actual need based on locally adapted risk assessment systems.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
María Rosa Simón ◽  
Cristina A. Cordo ◽  
Nadia S. Castillo ◽  
Paul C. Struik ◽  
Andreas Börner

Leaf blotch of wheat (Septoria triticiRob. ex Desm., teleomorphMycosphaerella graminicola(Fückel) Schröt. in Cohn) causes significant losses in wheat. During the last decades studies about the genetic variability of the pathogen and location of the resistance have been intensive around the world. The knowledge about the genetic variation ofM. graminicolais very important because it could allow us to determine which genotypes predominate within a geographic area. It also can be used to evaluate the germplasm resistance of wheat cultivars with isolates with high genetic differences. In addition, the knowledge of the genes conditioning resistance in different genotypes allows getting precise combination in new germplasm. The incorporation of the known genes in new cultivars could contribute to broadening the resistance to the pathogen. A paper about genetic variability of the pathogen and location of the resistance, with special emphasis in the work carried out in Argentina, is presented.


2000 ◽  
Vol 13 (12) ◽  
pp. 1375-1379 ◽  
Author(s):  
Gert H. J. Kema ◽  
Els C. P. Verstappen ◽  
Cees Waalwijk

Segregation of avirulence in Mycosphaerella graminicola, a heterothallic ascomycete that causes wheat septoria tritici leaf blotch, was studied in F1, BC1, and F2 populations by inoculation assays on five wheat cultivars in the seedling stage and by amplified fragment length polymorphism and random amplified polymorphic DNA analyses. F1 was generated by crossing isolates IPO323 (avirulent) and IPO94269 (virulent). All F1, BC1, and F2 progeny isolates were virulent on the susceptible check cultivar Taichung 29 and were avirulent on the resistant check cultivar Kavkav-K4500. Avirulence segregation was observed in F1 and in several BC1 and F2 generations on the differential cultivars Shafir, Kavkaz, and Veranopolis at a 1:1 ratio. Avirulence for the three differential cultivars always cosegregated. We conclude that avirulence in isolate IPO323 is controlled by a single, seemingly complex locus.


Sign in / Sign up

Export Citation Format

Share Document