scholarly journals The dry nitrogen yields nitrogen uptake, and the efficacy on nitrogen fertilisation in long-term experiment in Prague

2011 ◽  
Vol 49 (No. 8) ◽  
pp. 337-345 ◽  
Author(s):  
J. Kubát ◽  
J. Klír ◽  
D. Pova

Long-term field experiments conducted under different soil and climate conditions and their databases provide invaluable information and are indispensable means in the study of the productivity and sustainability of the soil management systems. We evaluated the results of the dry matter yields of the main products obtained with four variants of organic and mineral fertilisation in three long-term field experiments established in 1955. The experiments differed in the cultivated crops. The period of evaluation was 12 and 16 years (1985–2000), respectively. The productivity of nine-year crop rotation was lower with the fertilised variants than that with the alternative growing of spring wheat and sugar beets. The dry matter yields on the Nil variants, however, were higher in the crop rotation than in the alternate sugar beet and spring wheat growing, apparently due to the symbiotic nitrogen fixation. The dry matter yields of sugar beet and mainly of spring wheat declined in almost all variants of fertilisation in the alternate sugar beet and spring wheat growing, over the evaluated time period. In spite of the relatively high dry matter production, the declining yields indicated a lower sustainability of the alternate cropping system. Both organic and mineral fertilisation increased the production of the cultivated crops. The differences in the average dry matter yields were statistically significant. Both organic and mineral fertilisation enhanced significantly the N-uptake by the cultivated crops. The effectivity of nitrogen input was the highest with the alternate cropping of sugar beet and spring wheat indicating that it was more demanding for the external N-input and thus less sustainable than nine-year crop rotation.

2015 ◽  
Vol 66 (6) ◽  
pp. 553 ◽  
Author(s):  
A. M. Whitbread ◽  
C. W. Davoren ◽  
V. V. S. R. Gupta ◽  
R. Llewellyn ◽  
the late D. Roget

Continuous-cropping systems based on no-till and crop residue retention have been widely adopted across the low-rainfall cereal belt in southern Australia in the last decade to manage climate risk and wind erosion. This paper reports on two long-term field experiments that were established in the late 1990s on texturally different soil types at a time of uncertainty about the profitability of continuous-cropping rotations in low-rainfall environments. Continuous-cereal systems significantly outyielded the traditional pasture–wheat systems in five of the 11 seasons at Waikerie (light-textured soil), resulting in a cumulative gross margin of AU$1600 ha–1 after the initial eight seasons, almost double that of the other treatments. All rotation systems at Kerribee (loam-textured soil) performed poorly, with only the 2003 season producing yields close to 3 t ha–1 and no profit achieved in the years 2004–08. For low-rainfall environments, the success of a higher input cropping system largely depends on the ability to offset the losses in poor seasons by capturing greater benefits from good seasons; therefore, strategies to manage climatic risk are paramount. Fallow efficiency, or the efficiency with which rainfall was stored during the period between crops, averaged 17% at Kerribee and 30% at Waikerie, also indicating that soil texture strongly influences soil evaporation. A ‘responsive’ strategy of continuous cereal with the occasional, high-value ‘break crop’ when seasonal conditions are optimal is considered superior to fixed or pasture–fallow rotations for controlling grass, disease or nutritional issues.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523c-523
Author(s):  
Siegfried Zerche

Refined nutrient delivery systems are important for environmentally friendly production of cut flowers in both soil and hydroponic culture. They have to be closely orientated at the actual nutrient demand. To solve current problems, express analysis and nutrient uptake models have been developed in horticulture. However, the necessity of relatively laborious analysis or estimation of model input parameters have prevented their commercial use up to now. For this reason, we studied relationships between easily determinable parameters of plant biomass structure as shoot height, plant density and dry matter production as well as amount of nitrogen removal of hydroponically grown year-round cut chrysanthemums. In four experiments (planting dates 5.11.91; 25.3.92; 4.1.93; 1.7.93) with cultivar `Puma white' and a fixed plant density of 64 m2, shoots were harvested every 14 days from planting until flowering, with dry matter, internal N concentration and shoot height being measured. For each planting date, N uptake (y) was closely (r2 = 0.94; 0.93; 0.84; 0.93, respectively) related to shoot height (x) at the time of cutting and could be characterized by the equation y = a * × b. In the soilless cultivation system, dry matter concentrations of N remained constant over the whole growing period, indicating non-limiting nitrogen supply. In agreement with constant internal N concentrations, N uptake was linearly related (r2 = 0.94 to 0.99) to dry matter accumulation. It is concluded that shoot height is a useful parameter to include in a simple model of N uptake. However, in consideration of fluctuating greenhouse climate conditions needs more sophisticated approaches including processes such as water uptake and photosynthetically active radiation.


2021 ◽  
Vol 126 ◽  
pp. 126263
Author(s):  
Mario Fontana ◽  
Gilles Bélanger ◽  
Juliane Hirte ◽  
Noura Ziadi ◽  
Saïd Elfouki ◽  
...  

2003 ◽  
Vol 49 (5) ◽  
pp. 465-483 ◽  
Author(s):  
Katalin Debreczeni ◽  
Martin Körschens

2018 ◽  
Vol 218 ◽  
pp. 158-170 ◽  
Author(s):  
Theresa Zicker ◽  
Sabine von Tucher ◽  
Mareike Kavka ◽  
Bettina Eichler-Löbermann

Sign in / Sign up

Export Citation Format

Share Document