Nitrogen Demand of Cut Chrysanthemums in Relation to Shoot Height and Planting Date

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523c-523
Author(s):  
Siegfried Zerche

Refined nutrient delivery systems are important for environmentally friendly production of cut flowers in both soil and hydroponic culture. They have to be closely orientated at the actual nutrient demand. To solve current problems, express analysis and nutrient uptake models have been developed in horticulture. However, the necessity of relatively laborious analysis or estimation of model input parameters have prevented their commercial use up to now. For this reason, we studied relationships between easily determinable parameters of plant biomass structure as shoot height, plant density and dry matter production as well as amount of nitrogen removal of hydroponically grown year-round cut chrysanthemums. In four experiments (planting dates 5.11.91; 25.3.92; 4.1.93; 1.7.93) with cultivar `Puma white' and a fixed plant density of 64 m2, shoots were harvested every 14 days from planting until flowering, with dry matter, internal N concentration and shoot height being measured. For each planting date, N uptake (y) was closely (r2 = 0.94; 0.93; 0.84; 0.93, respectively) related to shoot height (x) at the time of cutting and could be characterized by the equation y = a * × b. In the soilless cultivation system, dry matter concentrations of N remained constant over the whole growing period, indicating non-limiting nitrogen supply. In agreement with constant internal N concentrations, N uptake was linearly related (r2 = 0.94 to 0.99) to dry matter accumulation. It is concluded that shoot height is a useful parameter to include in a simple model of N uptake. However, in consideration of fluctuating greenhouse climate conditions needs more sophisticated approaches including processes such as water uptake and photosynthetically active radiation.

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1001A-1001
Author(s):  
Cedric A. Sims ◽  
Srinivasa R. Mentreddy

Basil (Ocimum sp.), belonging to the mint family, Lamiaceae (Labiatae), is a popular herb grown for the fresh market or for its dried aromatic leaves, which are used as a spice or in potpourris. In Asian countries, basil, particularly O. tenuiflorum, is better known as a medicinal plant species used for treating ailments ranging from colds to complex diseases such as cancers and diabetes. In the United States, however, it has a limited acceptance as a fresh-market herb. There is much potential for developing basil as a medicinal plant to cater to the growing herbal medicinal products industry. A field trial was therefore conducted to determine optimum date of planting basil in Alabama. Six-week-old seedlings were transplanted from the greenhouse into field plots arranged in a split-plot design with four replications. Planting dates at monthly intervals beginning in April were the main plots and three Ocimum accessions, Ames 23154, Ames 23155, and PI 288779 were sub-plot treatments. The accessions were compared for growth, leaf area development, light interception, canopy cover, and dry matter accumulation and partitioning pattern over planting dates. Ames 23154, with greater canopy cover (98.5%) and photosynthetically active radiation interception (96.1%), also produced higher total plant biomass than other accessions. Accession PI 288779 appeared to partition greater dry matter to leaves, which are the primary source of bioactive compounds in basil. Among planting dates, second (May) date of planting appeared to be optimum for both total biomass and leaf dry matter production. Genotypic variation f or dry-matter partitioning and relationships among agronomic parameters as influenced by planting date will be discussed in this presentation.


2003 ◽  
Vol 51 (1) ◽  
pp. 25-35 ◽  
Author(s):  
A. Y. Allam ◽  
G. R. El-Nagar ◽  
A. H. Galal

This investigation was carried out at the Experimental Farm of Assiut University during the summers of 2000 and 2001 to study the responses of two sunflower hybrids (Vidoc and Euroflora) to planting dates (May 1st, June 1st and July 1st) and planting densities (55,533, 83,300 and 166,600 plants/ha). The results indicated that the two varieties differed highly significantly in all studied traits except oil yield/ha. The highest seed yield (3.64 t/ha) was obtained with the variety Vidoc. In addition, the results revealed that the planting date exerted a highly significant influence on all vegetative growth traits along with yield and its components. Increasing plant density increased the seed and oil yield/ha. By contrast, the stem diameter, head diameter, 100-seed weight and seed yield/plant decreased with increasing plant density. The interaction between varieties and plant density had a highly significant effect on head diameter. The greatest head diameter (20.06 cm) was recorded for the variety Vidoc planted at lower density. Concerning the interaction between planting density and planting date, the highest seed yield (4.47 t/ha) was obtained from dense plants at the early sowing date, and the highest oil % (45.32) at the late planting date and the lowest plant density. The second order interaction exerted a highly significant influence on stem and head diameter in addition to seed yield/plant, where the highest value (78.13 g/plant) was obtained with the variety Vidoc planted on May 1st at the lowest plant density.


Author(s):  
A.V. Cherkashyna ◽  
◽  
E.F. Sotchenko ◽  

Dry matter yield is an objective indicator of assessing the productivity of corn hybrids grown for silage and green fodder. The aim of the work was to identify optimal planting dates to obtain maximum yield of dry matter at the late milk stage of development for hybrids of corn depending on groups of maturity under rain-fed conditions of the Crimean steppe zone. The sowing dates of the field experiment were on April 5th, 15th, and 25th. We studied hybrids of corn of different groups of maturity. Soil – chernozems southern low-humus. Meteorological conditions in 2016 were characterized by increased moisture availability (Selyaninov Hydrothermal Coefficient (HTC) 1.46). In 2017, severe drought was noted (HTC 0.34). Moisture availability was insufficient in 2018 and 2019 (HTC 0.79 and 0.78, respectively). In 2016-2019, the best planting date for hybrid ‘Nur’ was April 15th; the dry matter yield in the late milk stage was 6.69 t/ha. For the medium- early hybrid ‘Mashuk 220 MV’, the best sowing dates were April 15th and 25th; dry matter yield was 5.95 and 5.78 t/ha, respectively. Hybrid ‘Mashuk 355 MV’ demonstrated higher dry matter yield on April 5th and 15th (7.12 and 6.99 t/ha). However, the planting date of April 25th led to significant yield decreased (to 6.1 t/ha).


1997 ◽  
Vol 48 (1) ◽  
pp. 91 ◽  
Author(s):  
A. Hardy ◽  
C. Huyghe ◽  
J. Papineau

Despite the high oil and protein content of the seeds, the agronomic potential of Lupinus mutabilis Sweet, a South American lupin species, is limited because of its low seed yield and its uncertain maturity. Dry matter accumulation and partitioning, and seed yield, of 2 genotypes (early-maturing LM34 and late-maturing LM268) were studied in 2 seasons at 2 densities at Lusignan, France. Total dry matter at harvest was, on average, 680 g/m2. The mainstem and first-order branches mainly contributed to total plant biomass but pods were only produced on the mainstem. On average, across the different crops, the maximum leaf area index (LAI) was 2· 8. The duration of LAI above 2·5 was short and not correlated with the total dry matter production. The partitioning of the dry matter varied according to the genotype. LM34 showed enhanced pod growth, its harvest index (HI) was 0·32, and seed yield averaged 1·28 t/ha. LM268 showed enhanced vegetative growth, both HI and seed yield were lower (0·16 and 1·13 t/ha, respectively), and whole plant maturity was never reached. For both genotypes during the pod filling, no remobilisation of assimilates occurred from stems to pods.


1974 ◽  
Vol 25 (5) ◽  
pp. 723 ◽  
Author(s):  
RJ Lawn ◽  
DE Byth

Vegetative and reproductive development of a range of soya bean cultivars was studied over a series of planting dates in both hill plots and row culture at Redland Bay, Qld. Responses in the extent of vegetative and reproductive development were related to changes in the phasic developmental patterns. The duration and extent of vegetative development for the various cultivar-planting date combinations were closely associated with the length of the period from planting to the cessation of flowering. Thus, vegetative growth was greatest for those planting dates which resulted in a delay in flowering and/or extended the flowering phase. Similarly, genetic lateness of maturity among cultivars was associated with more extensive vegetative development. Seed yield per unit area increased within each cultivar as the length of the growing period was extended until sufficient vegetative growth occurred to allow the formation of closed canopies under the particular agronomic conditions imposed. Further increases in the length of the period of vegetative growth failed to increase seed yield, and in some cases seed yields were actually reduced. Biological efficiency of seed production (BE) was negatively correlated with the length of the vegetative growth period. Differences in BE among cultivar-planting date combinations were large. It is suggested that maximization of seed yield will necessitate an optimum compromise between the degree of vegetative development and BE. Optimum plant arrangement will therefore vary, depending on the particular cultivar-planting date combination. ___________________ \*Part I, Aust. J. Agric. Res., 24: 67 (1973).


1981 ◽  
Vol 61 (2) ◽  
pp. 265-273
Author(s):  
D. J. HUME ◽  
YILMA KEBEDE

Early-maturing grain sorghum (Sorghum bicolor (L.) Moench) hybrids which have potential usefulness in southern Ontario are commercially available. One such hybrid, Pride P130, and two experimental hybrids, Pride X4043 and Pride X3160, were grown at three planting dates and three plant densities in 1975 and 1976 at Elora, Ontario. There were several hybrid × planting date and hybrid × plant density interactions for the development and yield parameters measured. However, grain yields of all hybrids decreased by about 10% per week when plantings were delayed 2 or 4 wk after mid-May in 1975. In 1976, yields declined even more after late planting. Increasing populations from 75 000 to 300 000 plants/ha in 1975 increased grain yields from 4.3 to 6.0 t/ha, averaged over hybrids and planting dates. In 1976, raising populations from 150 000 to 450 000 plants/ha increased average yields from 3.2 to 3.7 t/ha. P130 was the earliest and best-yielding hybrid in both years. In 1975, which had a warm May and near-average temperatures, the best treatment yielded 7.3 t grain/ha and hybrids at all planting dates matured. The best treatment approached grain corn (Zea mays L.) yields. In 1976 with a cool spring and late summer, the highest grain yield was 5.7 t/ha with early planting, but 11 June plantings did not mature. In south-central Ontario, sorghum grain yields appear less reliable than those of corn.


1976 ◽  
Vol 56 (3) ◽  
pp. 691-698 ◽  
Author(s):  
E. E. N. A. BONAPARTE ◽  
R. I. BRAWN

The effects of plant density on leaf number and some developmental events in four corn hybrids were studied in 1969 and 1970. Increase in plant density was accompanied by a decrease in leaf number, an increase in the periods from planting to tassel emergence and mid-silk, and an increase in grain moisture at harvest. High linear correlations between leaf number and these developmental events were obtained within the spacing environments. The effects of eight planting dates on leaf number and some developmental events were studied in 1970. Delayed planting was accompanied by changes in leaf number, with a significant increase in leaf number at the middle planting dates, a decrease in the periods from planting to tassel emergence and mid-silk, and an increase in grain moisture at harvest. Leaf number was highly significantly correlated with these developmental events within the planting date environments.


1966 ◽  
Vol 46 (1) ◽  
pp. 77-85 ◽  
Author(s):  
H. F. Fletcher ◽  
A. R. Maurer ◽  
D. P. Ormrod ◽  
B. Stanfield

The effect of 15 planting dates on various growth characteristics of peas var. Dark Skin Perfection was studied in outdoor pot experiments at Vancouver and Agassiz, B.C. Differences in growth and yield between locations and planting dates were partly accounted for by the mean of maximum temperatures for the growth period.At Agassiz where temperatures exceeded the optimum for most growth characteristics in many of the later plantings, the mean of maximum temperatures was negatively correlated with total dry-matter yield, peas per pod, and pea yield; was positively correlated with branching; and had no effect on pods per plant, double-podded nodes, and tillering. At Vancouver, where temperatures were suboptimum for the early plantings and approached optimum for the later plantings, the mean of maximum temperatures was positively correlated with total dry-matter yield, pods per plant, double-podded nodes, tillering, and pea yield but had no effect on peas per pod or branching. A seasonal mean maximum temperature of 68 to 70°F was considered to be optimum for peas.


2007 ◽  
Vol 25 (1) ◽  
pp. 36-42
Author(s):  
H. Bohne ◽  
M. Hasler

Abstract Three woody species Forsythia x intermedia ‘Lynwood’, Weigela ‘Bristol Ruby’, and Prunus laurocerasus ‘Otto Luyken’ were grown in 5 liter (# 1.3) containers with white peat and peat-reduced substrates. Plants were fertilized by a controlled-release or organic fertilizer. The aim was to investigate the relation between mineral N-content in the substrate and growth and N-uptake of the plants. Plant biomass was influenced by the mineral N-content in the substrate and by the substrate, but not by the type of fertilizer. Plant biomass of plants in the white peat substrate was significantly greater than plants grown in the peat-reduced substrates. Different equations describe the relation between mineral N in the substrate and biomass. Only for the white peat substrate in June and August was the slope of these regressions significant and the determination coefficient (r2) high. Dry matter of above ground biomass was 38% of fresh matter. The root-to-shoot ratio varied widely. There was a significant exponential relation between the biomass and the height of the plants, but not with the number of shoots. The N-content of the plant was related to its fresh matter. The findings establish a possibility to deduce N-uptake from plant biomass and thus improve fertilization.


Sign in / Sign up

Export Citation Format

Share Document