scholarly journals Induced wound response of Norway spruce Picea abies P. Karst. after artificial inoculation by imagoes of Ips typographus

2012 ◽  
Vol 49 (No. 9) ◽  
pp. 403-411
Author(s):  
L. Jankovský ◽  
D. Novotný ◽  
R. Mrkva

Inoculation experiments were carried out on a set of trees with imagoes of Ips typographus L. which origin from the Šumava Mts. and the Křtiny Training Enterprise. The objective of back inoculations was to determine whether species found on the surface of Ips typographus imagoes spread after the inoculation also through host tissues. It the vicinity of inoculation by Ips typographus imagoes, marked necrotic zones are evident including symptoms of the penetration of vascular pathogens through phloem and sapwood. The most marked reactions were observed in case of inoculation by an untreated Ips typographus imago. Treatment of Ips typographus imagoes by Ibefungin and Fundazol preparations did not demonstrate expected effects in full scale. The spores of several ophiostomoid fungi like Ceratocystis polonica (Siem.) C. Moreau were observed on the surface of bark beetles and at the same time were re-isolated from wounds inoculated by Ips typographus imagoes. The other fungi like Ophiostoma bicolor Davidson & Wells, Leptographium cf. lundbergii Lagerberg & Melin., Pezicula eucrita Karst., Phomopsis sp. and other were found in wounds with the imagoes artificial infection.    

Biologia ◽  
2009 ◽  
Vol 64 (6) ◽  
Author(s):  
Robert Jankowiak ◽  
Magdalena Kacprzyk ◽  
Marta Młynarczyk

AbstractBark beetles (Coleoptera: Scolytidae) infesting Norway spruce trees are known to be associated with fungi, especially species of Ophiostoma sensu lato and Ceratocystis. However, very little is known about these fungi in Poland. In this study, we examined the ophiostomatoid species associated with seven species of bark beetles developing in Norway spruce (Picea abies). Fungi were isolated from the beetles and their galleries at ten sites in southern Poland. We identified a total of 2,769 fungal isolates that belong to 19 ophiostomatoid species. These 19 species included a total of 16 associations between fungi and bark beetles that had not been previously recorded. The isolated fungal species were similar to those previously reported. The species spectrum and relative abundance of fungal associates were similar in seven bark beetle species, despite some differences between species. Except for Pityophthorus pityographus, all bark beetles species were frequently associated with ophiostomatoid fungi. The most commonly encountered fungal associates of bark beetles were the following: Ophiostoma ainoae, O. bicolor, O. piceae sensu lato and Grosmannia piceiperda. The results support the hypothesis that pathogenic ophiostomatoid fungi are important for aggressive bark beetles to kill trees. The most virulent fungal associate of bark beetles, Ceratocystis polonica was most commonly associated with Ips typographus. The most frequent ophiostomatoid species isolated from the beetles and galleries of P. pityographus were O. ainoae and Graphium fimbriisporum.


2010 ◽  
Vol 56 (No. 10) ◽  
pp. 474-484 ◽  
Author(s):  
E. Kula ◽  
W. Ząbecki

Research on merocoenoses of cambioxylophagous insect fauna of Norway spruce (Picea abies [L.] Karst.) was carried out in spruce stands of different age in the area with an endemic population (Moravian-Silesian Beskids, Czech Republic) and in the area with an epidemic population (Beskid Żywiecki, Poland) of the eight-toothed spruce bark beetle Ips typographus (L.). The structure of merocoenoses was characterized separately for standing trees attacked by bark beetles, trees struck by lightning, trees affected by fungal pathogens and wind-felling and trees in the form of snags and fragments. The occurrence of cambioxylophagous insects, mostly bark beetles (Coleoptera: Scolytidae), was compared between the study areas with emphasis on dominant facultative primary bark beetles and types of damage to spruce trees.  


2015 ◽  
Vol 55 (2) ◽  
pp. 156-161 ◽  
Author(s):  
Iwona Skrzecz ◽  
Wojciech Grodzki ◽  
Mieczysław Kosibowicz ◽  
Dorota Tumialis

Abstract The study estimated the efficacy of a net coated with alpha-cypermethrin used to protect Norway spruce [Picea abies (L.) H. Karst] wood against bark beetle infestations. The inside of the net was coated with 100 mg/m2 of alpha-cypermethrin. The studies carried out in 2010 and 2011 took place in southern Poland in the Beskid Żywiecki and Beskid Sądecki mountains in P. abies stands threatened by Ips typographus (Linnaeus, 1758). The research material consisted of wood logs taken off of 70–80-year-old P. abies trees. The logs were wrapped in the net in the early spring before spring swarming of bark beetles. The unwrapped logs were considered as the study controls. An evaluation of the treatments was performed after 2 months. The evaluation was based on the counting of bark beetles galleries found after removing the bark from the wrapped and unwrapped logs. There were no insect galleries on the wrapped logs. The net was a barrier, on which bark beetles died. About 10 dead I. typographus beetles were found on 0.01 m2 of the net surface. On the bark from the unwrapped-control logs there were 3,156 galleries/entrance holes of bark beetles, in total, of which 73% belonged to I. typographus, 13% to Pityogenes chalcographus (Linnaeus, 1761), and almost 10% to Xyloterus lineatus (Oliv.). These results indicated the high efficacy of the net coated with alpha-cypermethrin used for the protection of Norway spruce wood against the bark beetles. At the same time, the net was found to have a negative effect on non-target entomofauna, mainly Hylobius spp., Thanasimus formicarius (L.), and Tetropium castaneum (F.). However, the use of a net did not affect other predatory (Carabidae) and parasitic (Ichneumonidae and Tachinidae) entomofauna.


1997 ◽  
Vol 75 (4) ◽  
pp. 618-625 ◽  
Author(s):  
Paal Krokene ◽  
Halvor Solheim

Twenty-five-year-old Norway spruce trees (Picea abies) were inoculated with four blue-stain fungi. Each tree was inoculated three times with each fungus and three times with sterile agar as a control, giving a total of 15 inoculations per tree. There was little variation in the extent of phloem necrosis produced in response to the different fungi, but 5 weeks after inoculation necroses induced by Ceratocystis polonica and Ambrosiella sp. were significantly longer than those for the other fungi. At the same time, C. polonica had induced sapwood desiccation twice as deeply into the wood as any other fungus. Hyphal growth of the fungi into phloem and sapwood followed the same pattern as necrosis length and desiccation depth. Five weeks after inoculation, C. polonica had penetrated phloem and sapwood farther than any other fungus. It grew more slowly than the other fungi in both tissues the first week after inoculation, but the four following weeks it grew more quickly than all other fungi. Key words: Ambrosiella, blue-stain fungi, Ceratocystis polonica, low-density inoculation, Ophiostoma piceae, Scolytidae.


1998 ◽  
Vol 28 (5) ◽  
pp. 720-728 ◽  
Author(s):  
Franck Brignolas ◽  
François Lieutier ◽  
Daniel Sauvard ◽  
Erik Christiansen ◽  
Alan A Berryman

Changes in phloem phenolic content of Norway spruce (Picea abies (L.) Karst.) clones were followed during the first 12 days of the reaction induced by phloem artificial inoculation with Ceratocystis polonica Siem., a bark beetle (Ips typographus L.) associated fungus. The aim was to confirm our previous results concerning the mechanisms of this reaction and the possible predictors of Norway spruce resistance to bark beetles and their associated fungi. The induced reaction was characterized by a slight decrease of tanning ability and an increase of (+)-catechin concentration, which confirmed our previous observations. The relative resistance of the clones was first predicted using the predictors previously proposed. In addition, the first axis of the principal component analysis describing the phenolic content of all clones was used as a synthetic predictor (resistance axis). Related variables were also tested as predictors. Actual resistance of each clone was then measured, using mass inoculations of C. polonica, and was compared with the predictions. Four predictors were so validated: the resistance axis, tanning ability and isorhapontin concentration in uninoculated phloem, and (+)-catechin concentration in the phloem 6 days after its inoculation. Phloem phenolic composition could thus be used to predict Norway spruce resistance to bark beetles and their associated fungi.


Agricultura ◽  
2015 ◽  
Vol 12 (1-2) ◽  
pp. 9-18
Author(s):  
Mateja Felicijan ◽  
Metka Novak ◽  
Nada Kraševec ◽  
Andreja Urbanek Krajnc

Abstract Bark beetles and their fungal associates are integral parts of forest ecosystems, the European spruce bark beetle (Ips typographus Linnaeus, 1758) and the associated pathogenic blue stain fungus Ceratocystis polonica (SIEM.) C. MOREAU, are the most devastating pests regarding Norway spruce [Picea abies (L.) H. KARST.]. Bark beetles commonly inhabit weakened and felled trees as well as vital trees. They cause physiological disorders in trees by destroying a phloem and cambium or interrupt the transpiration -ow in the xylem. Conifers have a wide range of effective defence mechanisms that are based on the inner bark anatomy and physiological state of the tree. The basic function of bark defences is to protect the nutrient-and energy-rich phloem, the vital meristematic region of the vascular cambium, and the transpiration -ow in the sapwood. The main area of defence mechanisms is secondary phloem, which is physically and chemically protected by polyphenolic parenchyma (PP) cells, sclerenchyma, calcium oxalate crystals and resin ducts. Conifer trunk pest resistance includes constitutive, inducible defences and acquired resistance. Both constitutive and inducible defences may deter beetle invasion, impede fungal growth and close entrance wounds. During a successful attack, systemic acquired resistance (SAR) becomes effective and represents a third defence strategy. It gradually develops throughout the plant and provides a systemic change within the whole tree’s metabolism, which is maintained over a longer period of time. The broad range of defence mechanisms that contribute to the activation and utilisation of SAR, includes antioxidants and antioxidant enzymes, which are generally linked to the actions of reactive oxygen species (ROS). The presented review discusses the current knowledge on the antioxidant defence strategies of spruce inner bark against the bark beetle (Ips typographus) and associated blue stain fungus (Ceratocystis polonica).


1999 ◽  
Vol 77 (2) ◽  
pp. 247-252 ◽  
Author(s):  
R Kirschner ◽  
F Oberwinkler

During a survey of fungi associated with bark beetles in Germany, an undescribed species of Ophiostoma was isolated that differs from the other species of the genus by having pigmented, aseptate, convergent ostiolar hyphae, cucullate, sheathed ascospores, and a Hyalorhinocladiella anamorph. The species is described as Ophiostoma neglectum Kirschner & Oberwinkler. It is rarely associated with primary bark beetles but often associated with secondary bark beetles mainly infesting Norway spruce.Key words: Ophiostoma neglectum, Hyalorhinocladiella, secondary bark beetles, Picea abies, Pinus sylvestris, conidial development.


Oecologia ◽  
2006 ◽  
Vol 148 (3) ◽  
pp. 426-436 ◽  
Author(s):  
Nadir Erbilgin ◽  
Paal Krokene ◽  
Erik Christiansen ◽  
Gazmend Zeneli ◽  
Jonathan Gershenzon

Sign in / Sign up

Export Citation Format

Share Document