fungal associates
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 17)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 9 (8) ◽  
pp. 1730
Author(s):  
Artemis Rumbou ◽  
Eeva J. Vainio ◽  
Carmen Büttner

Thanks to the development of HTS technologies, a vast amount of genetic information on the virosphere of temperate forests has been gained in the last seven years. To estimate the qualitative/quantitative impact of HTS on forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of HTS methods is extremely significant for forest virology. Reviewed data on viral presence in holobionts allowed us a first attempt to address the role of virome in holobionts. Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont; symbiotic microbiota and pathogens engage in a permanent interplay, which influences the host. Through virus–virus interplays synergistic or antagonistic relations may evolve, which may drastically affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protection based on endophytes and mycovirus biocontrol agents. The current analysis is conceived in light of the prospect that novel viruses may initiate an emergent infectious disease and that measures for the avoidance of future outbreaks in forests should be considered.


2021 ◽  
Vol 7 (8) ◽  
pp. 648
Author(s):  
Mark S. Calabon ◽  
E. B. Gareth Jones ◽  
Itthayakorn Promputtha ◽  
Kevin D. Hyde

This review brings together the research efforts on salt marsh fungi, including their geographical distribution and host association. A total of 486 taxa associated with different hosts in salt marsh ecosystems are listed in this review. The taxa belong to three phyla wherein Ascomycota dominates the taxa from salt marsh ecosystems accounting for 95.27% (463 taxa). The Basidiomycota and Mucoromycota constitute 19 taxa and four taxa, respectively. Dothideomycetes has the highest number of taxa, which comprises 47.12% (229 taxa), followed by Sordariomycetes with 167 taxa (34.36%). Pleosporales is the largest order with 178 taxa recorded. Twenty-seven genera under 11 families of halophytes were reviewed for its fungal associates. Juncus roemerianus has been extensively studied for its associates with 162 documented taxa followed by Phragmites australis (137 taxa) and Spartina alterniflora (79 taxa). The highest number of salt marsh fungi have been recorded from Atlantic Ocean countries wherein the USA had the highest number of species recorded (232 taxa) followed by the UK (101 taxa), the Netherlands (74 taxa), and Argentina (51 taxa). China had the highest number of salt marsh fungi in the Pacific Ocean with 165 taxa reported, while in the Indian Ocean, India reported the highest taxa (16 taxa). Many salt marsh areas remain unexplored, especially those habitats in the Indian and Pacific Oceans areas that are hotspots of biodiversity and novel fungal taxa based on the exploration of various habitats.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1922
Author(s):  
Teresa Szklarzewicz ◽  
Katarzyna Michalik ◽  
Beata Grzywacz ◽  
Małgorzata Kalandyk-Kołodziejczyk ◽  
Anna Michalik

Ophiocordyceps fungi are commonly known as virulent, specialized entomopathogens; however, recent studies indicate that fungi belonging to the Ophiocordycypitaceae family may also reside in symbiotic interaction with their host insect. In this paper, we demonstrate that Ophiocordyceps fungi may be obligatory symbionts of sap-sucking hemipterans. We investigated the symbiotic systems of eight Polish species of scale insects of Coccidae family: Parthenolecanium corni, Parthenolecanium fletcheri, Parthenolecanium pomeranicum, Psilococcus ruber, Sphaerolecanium prunasti, Eriopeltis festucae, Lecanopsis formicarum and Eulecanium tiliae. Our histological, ultrastructural and molecular analyses showed that all these species host fungal symbionts in the fat body cells. Analyses of ITS2 and Beta-tubulin gene sequences, as well as fluorescence in situ hybridization, confirmed that they should all be classified to the genus Ophiocordyceps. The essential role of the fungal symbionts observed in the biology of the soft scale insects examined was confirmed by their transovarial transmission between generations. In this paper, the consecutive stages of fungal symbiont transmission were analyzed under TEM for the first time.


Author(s):  
Artemis Rumbou ◽  
Eeva J. Vainio ◽  
Carmen Büttner

Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont. Symbiotic microbiota and pathogens engage in a permanent interplay, which influences the host. Thanks to the development of NGS technologies, a vast amount of genetic information on the virosphere of temperate forests has been gained the last seven years. To estimate the qualitative/quantitative impact of NGS in forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of NGS methods is extremely significant for forest virology. Reviewed data about viral presence in holobionts, allowed us to address the role of the virome in the holobionts. Genetic variation is a crucial aspect in hologenome, significantly reinforced by horizontal gene transfer among all interacting actors. Through virus-virus interplays synergistic or antagonistic relations may evolve, which may drastically affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protection based on endophytes and mycovirus biocontrol agents. The current analysis is conceived in light of the prospect that novel viruses may initiate an emergent infectious disease and that measures for avoidance of future outbreaks in forests should be considered.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 743
Author(s):  
Riikka Linnakoski ◽  
Ilmeini Lasarov ◽  
Pyry Veteli ◽  
Olli-Pekka Tikkanen ◽  
Heli Viiri ◽  
...  

The European spruce bark beetle (Ips typographus) has become a major forest pest in Finland in recent years. The beetle is a well-known vector of mainly ophiostomatoid fungi causing blue-stain of timber and pathogens that have the ability to amplify the insect damage. It also vectors other associated organisms, such as phoretic mites. The ecology of these mites remains poorly understood, including their associations with fungi. In this study, we considered filamentous fungi and yeasts associated with mites phoretic on I. typographus. Fungal identifications were based on DNA sequences and phylogenetic analyses of the ITS and/or partial β-tubulin gene regions. Fifteen fungal species were detected, including eight yeasts and seven filamentous fungi. Eleven percent of the beetles carried mites and of these 74% carried at least one fungal species. An average of two fungal species were carried per mite. The most commonly found filamentous fungi were Grosmannia penicillata (25%), Ophiostoma bicolor (19%), O. ainoae (12%) and O. brunneolum (12%). Of the yeast species, the most commonly found was Wickerhamomyces bisporus (47%). This study is the first to report yeasts associated with I. typographus and its phoretic mites in Finland. Majority of the filamentous fungal species found are those previously reported in association with I. typographus. The results also confirmed that many of the fungal species commonly found on I. typographus are also associated with its phoretic mites. However, the nature of the symbiosis between the mites, beetles and fungal associates remains to be understood.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maximilian Lehenberger ◽  
Nina Foh ◽  
Axel Göttlein ◽  
Diana Six ◽  
Peter H. W. Biedermann

Fungus-farming within galleries in the xylem of trees has evolved independently in at least twelve lineages of weevils (Curculionidae: Scolytinae, Platypodinae) and one lineage of ship-timber beetles (Lymexylidae). Jointly these are termed ambrosia beetles because they actively cultivate nutritional “ambrosia fungi” as their main source of food. The beetles are obligately dependent on their ambrosia fungi as they provide them a broad range of essential nutrients ensuring their survival in an extremely nutrient-poor environment. While xylem is rich in carbon (C) and hydrogen (H), various elements essential for fungal and beetle growth, such as nitrogen (N), phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), and manganese (Mn) are extremely low in concentration. Currently it remains untested how both ambrosia beetles and their fungi meet their nutritional requirements in this habitat. Here, we aimed to determine for the first time if galleries of ambrosia beetles are generally enriched with elements that are rare in uncolonized xylem tissue and whether these nutrients are translocated to the galleries from the xylem by the fungal associates. To do so, we examined natural galleries of three ambrosia beetle species from three independently evolved farming lineages, Xyleborinus saxesenii (Scolytinae: Xyleborini), Trypodendron lineatum (Scolytinae: Xyloterini) and Elateroides dermestoides (Lymexylidae), that cultivate unrelated ambrosia fungi in the ascomycete orders Ophiostomatales, Microascales, and Saccharomycetales, respectively. Several elements, in particular Ca, N, P, K, Mg, Mn, and S, were present in high concentrations within the beetles’ galleries but available in only very low concentrations in the surrounding xylem. The concentration of elements was generally highest with X. saxesenii, followed by T. lineatum and E. dermestoides, which positively correlates with the degree of sociality and productivity of brood per gallery. We propose that the ambrosia fungal mutualists are translocating essential elements through their hyphae from the xylem to fruiting structures they form on gallery walls. Moreover, the extremely strong enrichment observed suggests recycling of these elements from the feces of the insects, where bacteria and yeasts might play a role.


Mycorrhiza ◽  
2021 ◽  
Author(s):  
Grace A. Hoysted ◽  
Jill Kowal ◽  
Silvia Pressel ◽  
Jeffrey G. Duckett ◽  
Martin I. Bidartondo ◽  
...  

AbstractNon-vascular plants associating with arbuscular mycorrhizal (AMF) and Mucoromycotina ‘fine root endophyte’ (MFRE) fungi derive greater benefits from their fungal associates under higher atmospheric [CO2] (a[CO2]) than ambient; however, nothing is known about how changes in a[CO2] affect MFRE function in vascular plants. We measured movement of phosphorus (P), nitrogen (N) and carbon (C) between the lycophyte Lycopodiella inundata and Mucoromycotina fine root endophyte fungi using 33P-orthophosphate, 15 N-ammonium chloride and 14CO2 isotope tracers under ambient and elevated a[CO2] concentrations of 440 and 800 ppm, respectively. Transfers of 33P and 15 N from MFRE to plants were unaffected by changes in a[CO2]. There was a slight increase in C transfer from plants to MFRE under elevated a[CO2]. Our results demonstrate that the exchange of C-for-nutrients between a vascular plant and Mucoromycotina FRE is largely unaffected by changes in a[CO2]. Unravelling the role of MFRE in host plant nutrition and potential C-for-N trade changes between symbionts under different abiotic conditions is imperative to further our understanding of the past, present and future roles of plant-fungal symbioses in ecosystems.


2020 ◽  
Vol 45 (1) ◽  
pp. 177-195
Author(s):  
S. Marincowitz ◽  
T.A. Duong ◽  
S.J. Taerum ◽  
Z.W. de Beer ◽  
M.J. Wingfield

The red turpentine beetle (RTB; Dendroctonus valens ) is a bark beetle that is native to Central and NorthAmerica. This insect is well-known to live in association with a large number of Ophiostomatalean fungi. The beetle is considered a minor pest in its native range, but has killed millions of indigenous pine trees in China after its appearance in that country in the late1990s. Inorder to increase the base of knowledge regarding the RTB and its symbionts, surveys of the beetle's fungal associates were initially undertaken in China, and in a subsequent study in its native range in North America. A total of 30 Ophiostomatalean species that included several undescribed taxa, were identified in these surveys. In the present study, seven of the undescribed taxa collected during the surveys were further characterised based on their morphological characteristics and multi-genephylogenies. We proceeded to describe five of these as novel Leptographium spp. and two as new species of Ophiostoma. Four of the Leptographium spp. resided in the G. galeiformis-species complex, while one formed part of the L. olivaceum species complex. One Ophiostoma sp. was a member of the O. ips-species complex, while the only new species from China was closely related to O. floccosum. Two of the previously undescribed taxa from North America were shown to be congeneric with L. terebrantis, implying that this species was most often isolated in association with the RTB in North America. The undescribed taxon from North America was identified as O. ips, and like L. terebrantis, this species was also not recognized during the initial North American survey. Resolving the identities of these taxa provides essential baseline information to better understand the movement of fungal pathogens with this beetle. This then enhances our ability to accurately assess and predict the risks of invasions by these and related fungi.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rajib Majumder ◽  
Brodie Sutcliffe ◽  
Phillip W. Taylor ◽  
Toni A. Chapman

Abstract Bactrocera tryoni (Froggatt), the Queensland fruit fly (Qfly), is a highly polyphagous tephritid fly that is widespread in Eastern Australia. Qfly physiology is closely linked with its fungal associates, with particular relationship between Qfly nutrition and yeast or yeast-like fungi. Despite animal-associated fungi typically occurring in multi-species communities, Qfly studies have predominately involved the culture and characterisation of single fungal isolates. Further, only two studies have investigated the fungal communities associated with Qfly, and both have used culture-dependant techniques that overlook non-culturable fungi and hence under-represent, and provide a biased interpretation of, the overall fungal community. In order to explore a potentially hidden fungal diversity and complexity within the Qfly mycobiome, we used culture-independent, high-throughput Illumina sequencing techniques to comprehensively, and holistically characterized the fungal community of Qfly larvae and overcome the culture bias. We collected larvae from a range of fruit hosts along the east coast of Australia, and all had a mycobiome dominated by ascomycetes. The most abundant fungal taxa belonged to the genera Pichia (43%), Candida (20%), Hanseniaspora (10%), Zygosaccharomyces (11%) and Penicillium (7%). We also characterized the fungal communities of fruit hosts, and found a strong degree of overlap between larvae and fruit host communities, suggesting that these communities are intimately inter-connected. Our data suggests that larval fungal communities are acquired from surrounding fruit flesh. It is likely that the physiological benefits of Qfly exposure to fungal communities is primarily due to consumption of these fungi, not through syntrophy/symbiosis between fungi and insect ‘host’.


Sign in / Sign up

Export Citation Format

Share Document