vascular pathogens
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Katharina Hanika ◽  
Danny Schipper ◽  
Shravya Chinnappa ◽  
Marian Oortwijn ◽  
Henk J. Schouten ◽  
...  

Verticillium dahliae is a particularly notorious vascular wilt pathogen of tomato and poses a reoccurring challenge to crop protection as limited qualitative resistance is available. Therefore, alternative approaches for crop protection are pursued. One such strategy is the impairment of disease susceptibility (S) genes, which are plant genes targeted by pathogens to promote disease development. In Arabidopsis and cotton, the Walls Are Thin 1 (WAT1) gene has shown to be a S gene for V. dahliae. In this study, we identified the tomato WAT1 homolog Solyc04g080940 (SlWAT1). Transient and stable silencing of SlWAT1, based on virus-induced gene silencing (VIGS) and RNAi, respectively, did not consistently lead to reduced V. dahliae susceptibility in tomato. However, CRISPR-Cas9 tomato mutant lines carrying targeted deletions in SlWAT1 showed significantly enhanced resistance to V. dahliae, and furthermore also to Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici (Fol). Thus, disabling the tomato WAT1 gene resulted in broad-spectrum resistance to various vascular pathogens in tomato. Unfortunately these tomato CRISPR mutant lines suffered from severe growth defects. In order to overcome the pleiotropic effect caused by the impairment of the tomato WAT1 gene, future efforts should be devoted to identifying tomato SlWAT1 mutant alleles that do not negatively impact tomato growth and development.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alexandra Menna ◽  
Susanne Dora ◽  
Gloria Sancho-Andrés ◽  
Anurag Kashyap ◽  
Mukesh Kumar Meena ◽  
...  

Abstract Background Cell walls (CWs) are protein-rich polysaccharide matrices essential for plant growth and environmental acclimation. The CW constitutes the first physical barrier as well as a primary source of nutrients for microbes interacting with plants, such as the vascular pathogen Fusarium oxysporum (Fo). Fo colonizes roots, advancing through the plant primary CWs towards the vasculature, where it grows causing devastation in many crops. The pathogenicity of Fo and other vascular microbes relies on their capacity to reach and colonize the xylem. However, little is known about the root-microbe interaction before the pathogen reaches the vasculature and the role of the plant CW during this process. Results Using the pathosystem Arabidopsis-Fo5176, we show dynamic transcriptional changes in both fungus and root during their interaction. One of the earliest plant responses to Fo5176 was the downregulation of primary CW synthesis genes. We observed enhanced resistance to Fo5176 in Arabidopsis mutants impaired in primary CW cellulose synthesis. We confirmed that Arabidopsis roots deposit lignin in response to Fo5176 infection, but we show that lignin-deficient mutants were as susceptible as wildtype plants to Fo5176. Genetic impairment of jasmonic acid biosynthesis and signaling did not alter Arabidopsis response to Fo5176, whereas impairment of ethylene signaling did increase vasculature colonization by Fo5176. Abolishing ethylene signaling attenuated the observed resistance while maintaining the dwarfism observed in primary CW cellulose-deficient mutants. Conclusions Our study provides significant insights on the dynamic root-vascular pathogen interaction at the transcriptome level and the vital role of primary CW cellulose during defense response to these pathogens. These findings represent an essential resource for the generation of plant resistance to Fo that can be transferred to other vascular pathosystems.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1179
Author(s):  
Manuel Anguita-Maeso ◽  
Carmen Haro ◽  
Miguel Montes-Borrego ◽  
Leonardo De La Fuente ◽  
Juan A. Navas-Cortés ◽  
...  

Vascular pathogens are the causal agents of main diseases threatening the health and growth of olive crops worldwide. The use of endophytic microorganisms represents a challenging and promising strategy for management of vascular diseases in olive. Although current research has been focused on analyzing the structure and diversity of the endophytic microbial communities inhabiting the olive xylem, the characterization of this ecological niche has been overlooked and to date remain unexplored, despite that the characterization of the xylem sap composition is essential to unravel the nutritional requirements of xylem-limited microorganisms. In this study, branches from plantlets and adult olive trees of cultivars Picual and Arbequina were selected to characterize the chemical and microbial composition of olive xylem sap extracted using a Scholander pressure chamber. Metabolome and ionome analyses of xylem sap were performed by proton nuclear magnetic resonance (NMR) spectroscopy-based and by inductively coupled plasma with optical emission spectroscopy (ICP-OES), respectively. Olive xylem sap metabolites included a higher relative percentage of sugars (54.35%), followed by alcohols (28.85%), amino acids (8.01%), organic acids (7.68%), and osmolytes (1.12%). Within each of these groups, the main metabolites in the olive xylem sap were mannitol, ethanol, glutamine, acetic acid, and trigonelline, whereas K and Cl− were the main element and inorganic anion, respectively. Metabolomic profile varied when comparing olive plant age and genotype. The levels of glucose, fructose, sucrose and mannitol, choline, B and PO43− were significantly higher in adult trees than in plantlets for both olive genotypes, whereas NO3− and Rb content showed the opposite behavior. On the other hand, levels of aspartic acid, phenylalanine, and Na were significantly higher in ‘Picual’ than in ‘Arbequina’, whereas Fe showed the opposite behavior, but only for adult trees. Microbiome composition identified Firmicutes (67%), Proteobacteria (22%) and Actinobacteriota (11%) as the main phyla, while at the genus level Anoxybacillus (52%), Cutibacterium (7%), Massilia (6%), and Pseudomonas (3%) were the most representative. Both non-supervised hierarchical clustering analysis and supervised PLS-DA analysis differentiated xylem sap chemical and microbial composition first, according to the age of the plant and then by the olive genotype. PLS-DA analysis revealed that B, ethanol, Fe, fructose, glucose, mannitol, sucrose, and Sr, and Anoxybacillus, Cutibacterium, and Bradyrhizobium were the most significant chemical compounds and bacterial genera, respectively, in the discrimination of adult olive trees and plantlets. Knowledge of the chemical composition of xylem sap will lead to a better understanding of the complex nutritional requirements of olive xylem-inhabiting microorganisms, including vascular pathogens and their potential antagonists, and may allow the better design of artificial growing media to improve the culturing of the olive microbiome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jadran F. Garcia ◽  
Daniel P. Lawrence ◽  
Abraham Morales-Cruz ◽  
Renaud Travadon ◽  
Andrea Minio ◽  
...  

The Botryosphaeriaceae is a fungal family that includes many destructive vascular pathogens of woody plants (e.g., Botryosphaeria dieback of grape, Panicle blight of pistachio). Species in the genera Botryosphaeria, Diplodia, Dothiorella, Lasiodiplodia, Neofusicoccum, and Neoscytalidium attack a range of horticultural crops, but they vary in virulence and their abilities to infect their hosts via different infection courts (flowers, green shoots, woody twigs). Isolates of seventeen species, originating from symptomatic apricot, grape, pistachio, and walnut were tested for pathogenicity on grapevine wood after 4 months of incubation in potted plants in the greenhouse. Results revealed significant variation in virulence in terms of the length of the internal wood lesions caused by these seventeen species. Phylogenomic comparisons of the seventeen species of wood-colonizing fungi revealed clade-specific expansion of gene families representing putative virulence factors involved in toxin production and mobilization, wood degradation, and nutrient uptake. Statistical analyses of the evolution of the size of gene families revealed expansions of secondary metabolism and transporter gene families in Lasiodiplodia and of secreted cell wall degrading enzymes (CAZymes) in Botryosphaeria and Neofusicoccum genomes. In contrast, Diplodia, Dothiorella, and Neoscytalidium generally showed a contraction in the number of members of these gene families. Overall, species with expansions of gene families, such as secreted CAZymes, secondary metabolism, and transporters, were the most virulent (i.e., were associated with the largest lesions), based on our pathogenicity tests and published reports. This study represents the first comparative phylogenomic investigation into the evolution of possible virulence factors from diverse, cosmopolitan members of the Botryosphaeriaceae.


Author(s):  
Manuel Anguita-Maeso ◽  
Carmen Haro ◽  
Miguel Montes-Borrego ◽  
Leonardo De La Fuente ◽  
Juan A. Navas-Cortés ◽  
...  

Vascular pathogens are the causal agents of main diseases threatening the health and growth of olive crops worldwide. The use of endophytic microorganisms represents a challenging and promising strategy for management of vascular diseases in olive. Although current research has been focused on analyzing the structure and diversity of the endophytic microbial communities inhabiting the olive xylem, the characterization of this ecological niche has been overlooked and to date remain unexplored, despite that the characterization of the xylem sap composition is essential to unravel the nutritional requirements of xylem-limited microorganisms. In this study, branches from plantlets and adult olive trees of cultivars ‘Picual’ and ‘Arbequina' were selected to characterize the chemical composition of olive xylem sap extracted using a Scholander pressure chamber. Metabolome and ionome analyses of xylem sap were performed by proton nuclear magnetic resonance (NMR) spectroscopy-based and by inductively coupled plasma with optical emission spectroscopy (ICP-OES), respectively. Olive xylem sap metabolites included a higher relative percentage of sugars (54.35%), followed by alcohols (28.85%), amino acids (8.01%), organic acids (7.68%) and osmolytes (1.12%). Within each of these groups, the main metabolites in the olive xylem sap were mannitol, ethanol, glutamine, acetate and trigonelline, whereas K and Cl- were the main element and inorganic anion, respectively. Metabolomic profile varied when comparing olive plant age and genotype. The levels of glucose, fructose, sucrose and mannitol, choline, B and PO43 were significantly higher in adult trees than in plantlets for both olive genotypes, whereas NO3- and Rb content showed the opposite behavior. On the other hand, levels of aspartate, phenylalanine and Na were significantly higher in ‘Picual’ than in ‘Arbequina’ whereas Fe showed the opposite behavior but only for adult trees. Non-supervised hierarchical clustering analysis separated xylem sap composition firstly according to the plant age and then by the olive cultivar. Supervised PLS-DA analysis revealed that B, ethanol, Fe, Fructose, glucose, mannitol, sucrose and Sr were the most significative compounds discriminating adult trees from plantlets, whereas asparagine, aspartate, glutamate and phenylalanine or aspartate, arginine, ethanol and Sr were the most contributory compounds in the discrimination of both olive genotypes for adult trees or plantlets, respectively. Knowledge of the chemical composition of xylem sap will lead to a better understanding of the complex nutritional requirements of olive xylem-inhabiting microorganisms, including its vascular pathogens, and would allow the design of artificial growing media to improve culturing the olive microbiome.


2021 ◽  
Author(s):  
Jadran Garcia ◽  
Daniel P. Lawrence ◽  
Abraham Morales-Cruz ◽  
Renaud Travadon ◽  
Andrea Minio ◽  
...  

AbstractThe Botryosphaeriaceae is a fungal family that includes many destructive vascular pathogens of woody plants (e.g., Botryosphaeria dieback of grape, Panicle blight of pistachio). Species in the genera Botryosphaeria, Diplodia, Dothiorella, Lasiodiplodia, Neofusicoccum, and Neoscytalidium attack a range of horticultural crops, but they vary in virulence and in their abilities to infect their hosts via different infection courts (flowers, green shoots, woody twigs). Isolates of seventeen species, originating from symptomatic apricot, grape, pistachio, and walnut were tested for pathogenicity to grapevine wood after four months of incubation in potted plants in the greenhouse. Results revealed significant variation in virulence in terms of the length of the internal wood lesions caused by these seventeen species. Phylogenomic comparisons of the seventeen species of wood-colonizing fungi revealed clade-specific expansion of gene families representing putative virulence factors involved in toxin production and mobilization, wood degradation, and nutrient uptake. Statistical analyses of the evolution of the size of gene families revealed expansions of secondary metabolism and transporter gene families in Lasiodiplodia and of secreted cell wall degrading enzymes (CAZymes) in Botryosphaeria and Neofusicoccum genomes. In contrast, Diplodia, Dothiorella, and Neoscytalidium generally showed a contraction in the number of members of these gene families. Overall, species with expansions of gene families, such as secreted CAZymes, secondary metabolism, and transporters, were the most virulent (i.e., were associated with the largest lesions), based on our pathogenicity tests and published reports. This study represents the first comparative phylogenomic investigation into the evolution of possible virulence factors from diverse, cosmopolitan members of the Botryosphaeriaceae.


2020 ◽  
Vol 86 (16) ◽  
Author(s):  
Eber Naranjo ◽  
Marcus V. Merfa ◽  
Swadeshmukul Santra ◽  
Ali Ozcan ◽  
Evan Johnson ◽  
...  

ABSTRACT Phloem-limited bacterial “Candidatus Liberibacter” species are associated with incurable plant diseases worldwide. Antimicrobial treatments for these pathogens are challenging due to the difficulty of reaching the vascular tissue they occupy at bactericidal concentrations. Here, in vitro antimicrobial mechanisms of Zinkicide TMN110 (ZnK), a nonphytotoxic zinc oxide (ZnO)-based nanoformulation, were compared to those of bulk ZnO (b-ZnO) using as a model the only culturable species of the genus, Liberibacter crescens. Minimum bactericidal concentration (MBC) determination and time-kill assays showed that ZnK has a bactericidal effect against L. crescens, whereas b-ZnO is bacteriostatic. When ZnK was used at the MBC (150 ppm), its antimicrobial mechanisms included an increase in Zn solubility, generation of intracellular reactive oxygen species, lipid peroxidation, and cell membrane disruption; all of these were of greater intensity than those of b-ZnO. Inhibition of biofilms, which are important during insect vector colonization, was stronger by ZnK than by b-ZnO at concentrations between 2.5 and 10 ppm in batch cultures; however, neither ZnK nor b-ZnO removed L. crescens preformed biofilms when applied between 100 and 400 ppm. In microfluidic chambers simulating source-to-sink phloem movement, ZnK significantly outperformed b-ZnO in Zn mobilization and bactericidal activity against L. crescens planktonic cells in sink reservoirs. In microfluidic chamber assays assessing antibiofilm activity, ZnK displayed a significantly enhanced bactericidal activity against L. crescens individual attached cells as well as preformed biofilms compared to that of b-ZnO. The superior mobility and antimicrobial activity of ZnK in microenvironments make this formulation a promising product to control plant diseases caused by “Candidatus Liberibacter” species and other plant vascular pathogens. IMPORTANCE “Candidatus Liberibacter” species are associated with incurable plant diseases that have caused billions of dollars of losses for United States and world agriculture. Chemical control of these pathogens is complicated, because their life cycle combines intracellular vascular stages in plant hosts with transmission by highly mobile insect vectors. To date, “Candidatus Liberibacter” species are mostly unculturable, except for Liberibacter crescens, a member of the genus that has been used as a model for in vitro assays. Here, we evaluated the potential of Zinkicide (ZnK) as an antimicrobial against “Candidatus Liberibacter” species in batch cultures and under flow conditions, using L. crescens as a biological model. ZnK displayed bactericidal activity against L. crescens in batch cultures and showed increased mobility and bactericidal activity in microfluidic devices resembling “Candidatus Liberibacter” species natural habitats. ZnK performance observed here against L. crescens makes this compound a promising candidate to control plant diseases caused by vascular pathogens.


2020 ◽  
Author(s):  
Emile Gluck-Thaler ◽  
Aude Cerutti ◽  
Alvaro Perez-Quintero ◽  
Jules Butchacas ◽  
Verónica Roman-Reyna ◽  
...  

AbstractVascular pathogens travel long distances through host veins leading to life-threatening, systemic infections. In contrast, non-vascular pathogens remain restricted to infection sites, triggering localized symptom development. The contrasting features of vascular and non-vascular diseases suggest distinct etiologies, but the basis for each remains unclear. Here, we show that the hydrolase CbsA acts as a phenotypic switch between vascular and non-vascular plant pathogenesis. cbsA was enriched in genomes of vascular phytopathogenic bacteria in the Xanthomonadaceae family and absent in most non-vascular species. CbsA expression allowed non-vascular Xanthomonas to cause vascular blight while cbsA mutagenesis resulted in reduction of vascular or enhanced non-vascular symptom development. Phylogenetic hypothesis testing further revealed that cbsA was lost in multiple non-vascular lineages and more recently gained by some vascular subgroups, suggesting that vascular pathogenesis is ancestral. Our results overall demonstrate how the gain and loss of single loci can facilitate the evolution of complex ecological traits.


2020 ◽  
Author(s):  
Alain Jauneau ◽  
Aude Cerutti ◽  
Marie-Christine Auriac ◽  
Laurent D. Noël

AbstractHydathode is a plant organ responsible for guttation in vascular plants, i.e. the release of droplets at leaf margin or surface. Because this organ connects the plant vasculature to the external environment, it is also a known entry site for some vascular pathogens. In this study, we present a detailed microscopic examination of monocot hydathodes for three crops (maize, rice and sugarcane) and the model plant Brachypodium distachyon. Our study highlights both similarities and specificities of those epithemal hydathodes. These observations will serve as a foundation for future studies on the physiology and the immunity of hydathodes in monocots.


2019 ◽  
Vol 57 (1) ◽  
pp. 91-116 ◽  
Author(s):  
Aude Cerutti ◽  
Alain Jauneau ◽  
Patrick Laufs ◽  
Nathalie Leonhardt ◽  
Martin H. Schattat ◽  
...  

Hydathodes are organs found on aerial parts of a wide range of plant species that provide almost direct access for several pathogenic microbes to the plant vascular system. Hydathodes are better known as the site of guttation, which is the release of droplets of plant apoplastic fluid to the outer leaf surface. Because these organs are only described through sporadic allusions in the literature, this review aims to provide a comprehensive view of hydathode development, physiology, and immunity by compiling a historic and contemporary bibliography. In particular, we refine the definition of hydathodes.We illustrate their important roles in the maintenance of plant osmotic balance, nutrient retrieval, and exclusion of deleterious chemicals from the xylem sap. Finally, we present our current understanding of the infection of hydathodes by adapted vascular pathogens and the associated plant immune responses.


Sign in / Sign up

Export Citation Format

Share Document