Model of the influence of gravity-wave radiation of relativistic double star systems on the electric field in the troposphere

Author(s):  
L.V. Grunskaya ◽  
◽  
V.V. Isakevich ◽  
D.V. Isakevich ◽  
◽  
...  

A model is proposed which explains the observed effect of gravity-wave influence of relativistic binaries to the Earth’s electric field vertical projection in the near-ground atmosphere layer. The considered mechanism is a perturbation of the Earth’s orbit by the gravity waves which leads to a small displacement between the Earth and the Earth’s atmosphere free electric charge. The proposed model give amplitude estimations of Ez components spectrally localized at the relativistic binaries gravity waves’ frequencies which do not contradict to the observations.

2008 ◽  
Vol 596 ◽  
pp. 169-189 ◽  
Author(s):  
E. I. ÓLAFSDÓTTIR ◽  
A. B. OLDE DAALHUIS ◽  
J. VANNESTE

We consider the linear evolution of a localized vortex with Gaussian potential vorticity that is superposed on a horizontal Couette flow in a rapidly rotating strongly stratified fluid. The Rossby number, defined as the ratio of the shear of the Couette flow to the Coriolis frequency, is assumed small. Our focus is on the inertia–gravity waves that are generated spontaneously during the evolution of the vortex. These are exponentially small in the Rossby number and hence are neglected in balanced models such as the quasi-geostrophic model and its higher-order generalizations. We develop an exponential-asymptotic approach, based on an expansion in sheared modes, to give an analytic description of the three-dimensional structure of the inertia–gravity waves emitted by the vortex. This provides an explicit example of the spontaneous radiation of inertia–gravity waves by localized balanced motion in the small-Rossby-number regime.The inertia–gravity waves are emitted as a burst of four wavepackets propagating downstream of the vortex. The approach employed reduces the computation of inertia–gravity-wave fields to a single quadrature, carried out numerically, for each spatial location and each time. This makes it possible to unambiguously define an initial state that is entirely free of inertia–gravity waves, and circumvents the difficulties generally associated with the separation between balanced motion and inertia–gravity waves.


2015 ◽  
Vol 772 ◽  
pp. 80-106 ◽  
Author(s):  
Norihiko Sugimoto ◽  
K. Ishioka ◽  
H. Kobayashi ◽  
Y. Shimomura

Cyclone–anticyclone asymmetry in spontaneous gravity wave radiation from a co-rotating vortex pair is investigated in an $f$-plane shallow water system. The far field of gravity waves is derived analytically by analogy with the theory of aeroacoustic sound wave radiation (Lighthill theory). In the derived form, the Earth’s rotation affects not only the propagation of gravity waves but also their source. While the results correspond to the theory of vortex sound in the limit of $f\rightarrow 0$, there is an asymmetry in gravity wave radiation between cyclone pairs and anticyclone pairs for finite values of $f$. Anticyclone pairs radiate gravity waves more intensely than cyclone pairs due to the effect of the Earth’s rotation. In addition, there is a local maximum of intensity of gravity waves from anticyclone pairs at an intermediate $f$. To verify the analytical solution, a numerical simulation is also performed with a newly developed spectral method in an unbounded domain. The novelty of this method is the absence of wave reflection at the boundary due to a conformal mapping and a pseudo-hyperviscosity that acts like a sponge layer in the far field of waves. The numerical results are in excellent agreement with the analytical results even for finite values of $f$ for both cyclone pairs and anticyclone pairs.


1968 ◽  
Vol 31 (2) ◽  
pp. 309-319 ◽  
Author(s):  
F. W. G. Warren

A disk (i.e. a body whose maximum thickness is small compared with its lateral dimensions) floats with its central plane of symmetry upright. Its hydrostatic oscillations are lightly damped by the reaction of the gravity waves generated. A damping coefficient is obtained. It is shown that superimposed upon these oscillations is a small displacement which decays with the timetliket−4ort−5.


2010 ◽  
Vol 28 (9) ◽  
pp. 1625-1631
Author(s):  
Z. H. He ◽  
Z. X. Liu ◽  
T. Chen ◽  
C. Shen ◽  
X. Li ◽  
...  

Abstract. The relationship between the average structure of the inner magnetospheric large-scale electric field and geomagnetic activity levels has been investigated by Double Star TC-1 data for radial distances ρ between 4.5 RE and 12.5 RE and MLT between 18:00 h and 06:00 h from July to October in 2004 and 2005. The sunward component of the electric field decreases monotonically as ρ increases and approaches zero as the distance off the Earth is greater than 10 RE. The dawn-dusk component is always duskward. It decreases at about 6 RE where the ring current is typically observed to be the strongest and shows strong asymmetry with respect to the magnetic local time. Surprisingly, the average electric field obtained from TC-1 for low activity is almost comparable to that observed during moderate activity, which is always duskward at the magnetotail (8 RE~12 RE).


2019 ◽  
pp. 105-107
Author(s):  
A. S. Busygin ◽  
А. V. Shumov

The paper considers a method for simulating the flight of a multistage rocket in Matlab using Simulink software for control and guidance. The model takes into account the anisotropy of the gravity of the Earth, changes in the pressure and density of the atmosphere, piecewise continuous change of the center of mass and the moment of inertia of the rocket during the flight. Also, the proposed model allows you to work out various targeting options using both onboard and ground‑based information tools, to load information from the ground‑based radar, with imitation of «non‑ideality» of incoming target designations as a result of changes in the accuracy of determining coordinates and speeds, as well as signal fluctuations. It is stipulated that the design is variable not only by the number of steps, but also by their types. The calculations are implemented in a matrix form, which allows parallel operations in each step of processing a multidimensional state vector of the simulated object.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Takeru Yamada ◽  
Takeshi Imamura ◽  
Tetsuya Fukuhara ◽  
Makoto Taguchi

AbstractThe reason for stationary gravity waves at Venus’ cloud top to appear mostly at low latitudes in the afternoon is not understood. Since a neutral layer exists in the lower part of the cloud layer, the waves should be affected by the neutral layer before reaching the cloud top. To what extent gravity waves can propagate vertically through the neutral layer has been unclear. To examine the possibility that the variation of the neutral layer thickness is responsible for the dependence of the gravity wave activity on the latitude and the local time, we investigated the sensitivity of the vertical propagation of gravity waves on the neutral layer thickness using a numerical model. The results showed that stationary gravity waves with zonal wavelengths longer than 1000 km can propagate to the cloud-top level without notable attenuation in the neutral layer with realistic thicknesses of 5–15 km. This suggests that the observed latitudinal and local time variation of the gravity wave activity should be attributed to processes below the cloud. An analytical approach also showed that gravity waves with horizontal wavelengths shorter than tens of kilometers would be strongly attenuated in the neutral layer; such waves should originate in the altitude region above the neutral layer.


1998 ◽  
Vol 11 (1) ◽  
pp. 398-398
Author(s):  
Kenji Tanabe

Propagation of the surface waves of the lobe-filing components of close binary systems is investigated theoretically. Such waves are considered to be analogous to the gravity waves of water on the earth. As a result, the equations of the surface wave in the rotating frame of reference are reduced to the so-called Kortewegde Vries (KdV) equation and non-linear Schroedinger (NLS) equation according to its ”depth”. Each of these equations is known to have the solution of soliton. When this soliton is sent to the other component of the binary system through the Lagrangian point, it can give rise to the flare activity observed in some kinds of close binary systems.


2005 ◽  
Vol 23 (8) ◽  
pp. 2937-2942 ◽  
Author(s):  
O. Santolík ◽  
E. Macúšová ◽  
K. H. Yearby ◽  
N. Cornilleau-Wehrlin ◽  
H. StC. K. Alleyne

Abstract. We use the first measurements of the STAFF/DWP instrument on the Double Star TC-1 spacecraft to investigate whistler-mode chorus. We present initial results of a systematic study on radial variation of dawn chorus. The chorus events show an increased intensity at L parameter above 6. This is important for the possible explanation of intensifications of chorus, which were previously observed closer to the Earth at higher latitudes. Our results also indicate that the upper band of chorus at frequencies above one-half of the electron cyclotron frequency disappears for L above 8. The lower band of chorus is observed at frequencies below 0.4 of the electron cyclotron frequency up to L of 11-12. The maxima of the chorus power spectra are found at slightly lower frequencies compared to previous studies. We do not observe any distinct evolution of the position of the chorus frequency band as a function of L. More data of the TC-1 spacecraft are needed to verify these initial results and to increase the MLT coverage.


2000 ◽  
Vol 18 (10) ◽  
pp. 1316-1324 ◽  
Author(s):  
S.-D. Zhang ◽  
F. Yi ◽  
J.-F. Wang

Abstract. By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)


Sign in / Sign up

Export Citation Format

Share Document