scholarly journals The large-scale magnetospheric electric field observed by Double Star TC-1

2010 ◽  
Vol 28 (9) ◽  
pp. 1625-1631
Author(s):  
Z. H. He ◽  
Z. X. Liu ◽  
T. Chen ◽  
C. Shen ◽  
X. Li ◽  
...  

Abstract. The relationship between the average structure of the inner magnetospheric large-scale electric field and geomagnetic activity levels has been investigated by Double Star TC-1 data for radial distances ρ between 4.5 RE and 12.5 RE and MLT between 18:00 h and 06:00 h from July to October in 2004 and 2005. The sunward component of the electric field decreases monotonically as ρ increases and approaches zero as the distance off the Earth is greater than 10 RE. The dawn-dusk component is always duskward. It decreases at about 6 RE where the ring current is typically observed to be the strongest and shows strong asymmetry with respect to the magnetic local time. Surprisingly, the average electric field obtained from TC-1 for low activity is almost comparable to that observed during moderate activity, which is always duskward at the magnetotail (8 RE~12 RE).

2015 ◽  
Vol 12 (8) ◽  
pp. 1128-1132 ◽  
Author(s):  
Marie-Louise Bird ◽  
Cecilia Shing ◽  
Casey Mainsbridge ◽  
Dean Cooley ◽  
Scott Pedersen

Background:Sedentary behavior is related to metabolic syndrome and might have implications for the long-term health of workers in a low activity environment. The primary aim of this pilot study was to determine activity levels of adults working at a University during work hours. A secondary aim was to determine the relationship between actual and perceived activity levels.Methods:Activity levels of university staff (n = 15, male = 7, age = 53 ± 7 years, BMI = 26.5 ± 2.5kg·m2) were monitored over 5 consecutive workdays using SenseWear accelerometers, then participants completed a questionnaire of their perception of workplace sedentary time.Results:Each participant spent 71.5 ± 13.1% (358 ± 78 min) of their workday being sedentary (< 1.5 METs), 15.6 ± 9.0% involved in light activity (1.5–3 METs), 11.7 ± 10.0% in moderate activity (3–5 METs), and 1.1 ± 1.3% in vigorous activity (> 5 METs) (P < .0001). The mean difference between actual (SenseWear < 1.5 METs) and perceived sitting time was –2 ± 32%; however, perceived sedentary time was reported with a range of under-to-over estimation of –75% to 51%.Conclusion:This pilot study identifies long periods of low metabolic activity during the workday and poor perception of individual sedentary time. Interventions to reduce sedentary time in the workplace may be necessary to ensure that the work environment does not adversely affect long-term health.


1989 ◽  
Vol 1 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Juliane R. Fenster ◽  
Patty S. Freedson ◽  
Richard A. Washburn ◽  
R. Curtis Ellison

The relationship between physical activity measured using the LSI (Large Scale Integrated Activity Monitor), and questionnaire, with physical work capacity 170 (PWC 170) and aerobic capacity (peak V̇O2) was evaluated in 6- to 8-year-old children (n = 18). The mean (± SD) peak V̇O2 was 44.1 ± 5.6 ml • kg−1 • min−1. Peak V̇O2 was not significantly different for children (n = 8) who had completed two treadmill trials (45.4 vs. 43.5 ml • kg−1 • min−1; R = 0.67, p<0.05). The log LSI expressed as counts per hour (M ± SD = 2.1 ±.22 cts/hr) was the only activity method significantly related to peak V̇O2 (r = 0.59, p<0.05). The correlation between peak V̇O2 with the questionnaire was positive but nonsignificant (r = 0.20). PWC 170 was not related to peak V̇O2 (r = 0.21) or the activity variables (r = 0.12 questionnaire; r = 0.18 log LSI). When the group was divided into high and low peak V̇O2 groups (high: M = 48.8 ml • kg−1 • min−1; low: M = 39.5 ml • kg−1 • min−1), the log LSI was able to distinguish significant differences in activity levels (high: 2.23 ±. 19 cts/hr; low: 1.99±.19 cts/hr). This study suggests that activity measured with the LSI and aerobic capacity are related in this sample of 6- to 8-year-old children.


2005 ◽  
Vol 23 (2) ◽  
pp. 579-591 ◽  
Author(s):  
N. Yu. Ganushkina ◽  
T. I. Pulkkinen ◽  
T. Fritz

Abstract. Particles with different energies produce varying contributions to the total ring current energy density as the storm progresses. Ring current energy densities and total ring current energies were obtained using particle data from the Polar CAMMICE/MICS instrument during several storms observed during the years 1996-1998. Four different energy ranges for particles are considered: total (1-200keV), low (1-20keV), medium (20-80keV) and high (80-200keV). Evolution of contributions from particles with different energy ranges to the total energy density of the ring current during all storm phases is followed. To model this evolution we trace protons with arbitrary pitch angles numerically in the drift approximation. Tracing is performed in the large-scale and small-scale stationary and time-dependent magnetic and electric field models. Small-scale time-dependent electric field is given by a Gaussian electric field pulse with an azimuthal field component propagating inward with a velocity dependent on radial distance. We model particle inward motion and energization by a series of electric field pulses representing substorm activations during storm events. We demonstrate that such fluctuating fields in the form of localized electromagnetic pulses can effectively energize the plasma sheet particles to higher energies (>80keV) and transport them inward to closed drift shells. The contribution from these high energy particles dominates the total ring current energy during storm recovery phase. We analyse the model contributions from particles with different energy ranges to the total energy density of the ring current during all storm phases. By comparing these results with observations we show that the formation of the ring current is a combination of large-scale convection and pulsed inward shift and consequent energization of the ring current particles.


2020 ◽  
Author(s):  
Jessy Matar ◽  
Benoit Hubert ◽  
Stan Cowley ◽  
Steve Milan ◽  
Zhonghua Yao ◽  
...  

&lt;p&gt; The coupling between the Earth&amp;#8217;s magnetic field and the interplanetary magnetic field (IMF) transported by the solar wind results in a cycle of magnetic field lines opening and closing generally known as the Dungey substorm cycle, mostly governed by the process of magnetic reconnection. The geomagnetic field lines can therefore have either a closed or an open topology, i.e. lower latitude field lines are closed (map from southern ionosphere to the northern), while higher latitude field lines are open (map from one polar ionosphere into interplanetary space). Closed field lines can trap electrically charged particles that bounce between mirror points located in the North and South hemispheres while drifting in longitude around the Earth, forming the plasmasphere, the radiation belts and the ring current. The outer boundary of the plasmasphere is the plasmapause. Its location is mostly driven by the interplay of the corotation electric field of ionospheric origin, and the convection electric field that results from the interaction between the IMF and the geomagnetic field. At times of prolonged intense coupling between these fields, the response of the magnetosphere becomes global and a geomagnetic storm develops. The ring current created by the motion of the trapped energetic particles intensifies and then decays as the storm abates. This study aims to find a possible relationship between the evolution of the trapped population and the process of magnetic reconnection during storm times. The EUV instrument on board the NASA-IMAGE spacecraft observed the distribution of the trapped helium ions (He+) in the plasmasphere. We consider several cases of intense geomagnetic storms observed by the IMAGE satellite. We identify the plasmapause location (Lpp) during those cases. We find a strong correlation between the Dst index and Lpp. The ring current and the trapped particles are expected to vary during storms. We use the Tsyganenko magnetic field model to map the electric potential between the Heppner-Maynard boundary (HMB) in the ionosphere and the magnetosphere and estimate the voltage and electric field in the vicinity of the plasmapause. The ionospheric electric field is deduced from the ionospheric convection velocity measured by the SuperDARN (SD) radar network at high latitudes. The tangential electric field component of the moving plasmapause boundary is estimated from IMAGE-EUV observations of the plasmasphere and is compared with expectations based on the SD data. We combine measurements of the trapped population from IMAGE-EUV and IMAGE-FUV observations of the aurora to better understand and quantify the variability of the Earth's outer radiation belt during strong storms. The auroral precipitation at ionospheric latitude is studied using FUV imaging and compared to the He+ response during the storms.&lt;/p&gt;


A theory of the aurora polaris is proposed which attempts to explain many features of the complicated morphology of auroral displays. One basis of the theory is the presence, during magnetic disturbance, of additional or enhanced magnetic fields due to electric currents within a distance of several earth radii from the earth’s centre. One such field (denoted by DCF) is due to electric currents flowing near the inner surface of the solar stream that then envelopes the earth. A hollow is carved in the stream by the geomagnetic field. The other field (denoted by DR) is that of an electric ring current, additional or enhanced, that flows westward round the earth. This is carried by the particles of the Van Allen belts. A third field (denoted by DP) is that of the disturbance currents that flow in the ionosphere, under the impulsion of electromotive forces generated mainly in polar regions. We consider it likely that during magnetic storms and auroral displays, neutral lines appear in the magnetic field near the earth. These will lie mainly on the dark side of the earth, in or near the equatorial plane, on the nearer side of the ring current. At times these lines may extend over more than 180° of longitude, so that a part of them may lie on the sunward side of the earth. These neutral lines are of two types, which we call O and X they appear together, in pairs. During disturbed conditions there may be more than one pair. Lines of force cross at points on X neutral lines, but they do not pass through O neutral lines. As Dungey has shown, charged particles will tend to be concentrated near X points (of which the X neutral lines are the locus). Charges drawn toward the neutral line will be discharged into the earth’s atmosphere along the lines of magnetic force. We suggest that the location, nature and motions of the auroral forms are determined by the position, form and motion of the X neutral lines, lying in or near the plane of the geomagnetic equator. It seems necessary to suppose, in addition, that an electric field arises sporadically along the X lines. When this is absent, the aurora appears as a quiet arc. The onset of the suggested electric field concentrates the charges more narrowly near the X line and near the lines of force that extend from it to the auroral zone. This produces extremely thin-rayed auroral arcs. The above concentration of electrons near an X neutral line produces a large flux of electrons, while the proton flux is diminished. A dynamical instability due to this flux difference (the space charge density is supposed to be very small) produces a slight separation of protons and electrons along and near the lines of force through the X line. Hence in the auroral ionosphere there is an associated electric field. This is usually directed towards the equator. It drives electric current, usually westward, along the auroral zones, and produces the strong magnetic disturbances (DP) there observed. Birkeland called these polar elementary storms. The rapid auroral changes are ascribed to instabilities of the magnetic field in the region near the X line or lines, to the rear of the earth, where the resultant magnetic field is weak. The ray structure in the auroral arc is ascribed to an instability of the thin sheet of electron flow. Cosmic rockets have shown that the magnetic field, up to and beyond ten earth radii, departs from the values corresponding to the internally produced main geomagnetic field. As yet these explorations do not seem to have disclosed the existence of reversals of the field in or near the magnetic equatorial plane. But on the basis of our auroral hypothesis, we predict with considerable confidence that such reversals will be found to occur, on the dark side of the earth, during great auroral displays. The theory here proposed is discussed in connexion with recent I. G. Y. and I. G. C. auroral, magnetic and other data.


2011 ◽  
Vol 199-200 ◽  
pp. 25-31
Author(s):  
Fei Jiang He ◽  
Qiang Zhang ◽  
Zong Xi Cai

In order to determine the loads acting on the cutterhead of a compound shield, this paper aims at the large-scale and fully coupled system of the excavation face. Firstly, a new model is proposed to calculate the loads acting on a single cutter, in which the earth pressure of the chamber is taken into consideration. Then, by transforming the large-scale nonlinear contact problem into a smaller one, we set up the governing equations only including the penetration depth of cutters in the approach of the sub-structure condensation, to calculate the loads acting on the cutterhead. Finally, the relationship between the penetration per revolution and the total thrust and total torque acting on the cutters of the cutterhead of a compound shield is investigated.


Author(s):  
Tom J. Zajdel ◽  
Gawoon Shim ◽  
Linus Wang ◽  
Alejandro Rossello-Martinez ◽  
Daniel J. Cohen

AbstractDirected cell migration is critical across biological processes spanning healing to cancer invasion, yet no existing tools allow real-time interactive guidance over such migration. We present a new bioreactor that harnesses electrotaxis—directed cell migration along electric field gradients—by integrating four independent electrodes under computer control to dynamically program electric field patterns, and hence steer cell migration. Using this platform, we programmed and characterized multiple precise, two-dimensional collective migration maneuvers in renal epithelia and primary skin keratinocyte ensembles. First, we demonstrated on-demand, 90-degree collective turning. Next, we developed a universal electrical stimulation scheme capable of programming arbitrary 2D migration maneuvers such as precise angular turns and migration in a complete circle. Our stimulation scheme proves that cells effectively time-average electric field cues, helping to elucidate the transduction time scales in electrotaxis. Together, this work represents an enabling platform for controlling cell migration with broad utility across many cell types.


Author(s):  
L.V. Grunskaya ◽  
◽  
V.V. Isakevich ◽  
D.V. Isakevich ◽  
◽  
...  

A model is proposed which explains the observed effect of gravity-wave influence of relativistic binaries to the Earth’s electric field vertical projection in the near-ground atmosphere layer. The considered mechanism is a perturbation of the Earth’s orbit by the gravity waves which leads to a small displacement between the Earth and the Earth’s atmosphere free electric charge. The proposed model give amplitude estimations of Ez components spectrally localized at the relativistic binaries gravity waves’ frequencies which do not contradict to the observations.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
R. R. Ilma ◽  
M. C. Kelley ◽  
C. A. Gonzales

A correlation of the ionospheric electric field and the time derivative of the magnetic field was noticed over thirty years ago and has yet to be explained. Here we report on another set of examples during the superstorm of November 2004. The electric field in the equatorial ionosphere, measured with the Jicamarca incoherent scatter radar, exhibited a 3 mV/m electric field pulse that was not seen in the interplanetary medium. It was, however, accompanied by a correlation with the time derivative of the magnetic field measured at two points in Peru. Our inclination was to assume that the field was inductive. However, the time scale of the pulse was too short for the magnetic field to penetrate the crust of the Earth. This means that the area threaded by∂B/∂twas too small to create the observed electric field by induction. We suggest that the effect was caused by a modulation of the ring current location relative to the Earth due to the electric field. This electric field is required, as the magnetic field lines are considered frozen into the plasma in the magnetosphere. The closer location of the ring current to the Earth in turn increased the magnetic field at the surface.


Sign in / Sign up

Export Citation Format

Share Document