scholarly journals The Research on Optimization of the Multiphase Flow Field of Biogas Plant by Using CFD Software

2014 ◽  
Vol 8 (6) ◽  
Author(s):  
Ruyi Huang ◽  
Yan Long ◽  
Tao Luo ◽  
Zili Mei ◽  
Jun Wang ◽  
...  
2013 ◽  
Vol 25 (4) ◽  
pp. 606-615 ◽  
Author(s):  
Tie-yan Li ◽  
Liang Ye ◽  
Fang-wen Hong ◽  
Deng-cheng Liu ◽  
Hui-min Fan ◽  
...  

Author(s):  
Jun-Won Suh ◽  
Young-Seok Choi ◽  
Jin-Hyuk Kim ◽  
Kyoung-Yong Lee ◽  
Won-Gu Joo

Owing to the exhaustion of onshore resources, the development of resources has been expanded to the deep subsea. As the necessity of offshore plants is steadily increasing, there is an increasing interest in studying multiphase transportation technology. Multiphase pumps differ from single phase pumps in many ways, including performance evaluation, internal flow characteristics, and complex design methods. The primary issue of multiphase flow transport technology is that the characteristics of the internal flow change according to the gas volume fraction (GVF). Many theoretical and experimental analyses have been conducted to understand the mechanism of the internal flow field in multiphase pumps. As advanced computational fluid dynamics (CFD) based on the three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations have become reliable tools, numerical analyses accompanied by experimental research have been applied to investigate the hydraulic performance and internal flow field of multiphase pumps. A number of studies have been conducted to investigate these phenomena. However, the understanding of the detailed mechanisms of phase separation and the forces that occur in the internal flow is not completely clear. This study aimed to establish a multiphase flow analysis method with high reliability when the internal flow of the multiphase pump is bubbly flow. To ensure the reliability of the numerical analysis, the numerical results were compared with the experimental data. Additionally, to analyze the detailed dynamic flow phenomena in the multiphase pump, the effects of various interphase forces acting between the liquid and gas phase and the particle diameter of the gas phase on the hydraulic performance were investigated.


Author(s):  
Rong Kang ◽  
Haixiao Liu

Abstract Sand erosion is a severe problem during the transportation of oil and gas in pipelines. The technology of multiphase transportation is widely applied in production, due to its high efficiency and low cost. Among various multiphase flow patterns, annular flow is a common flow pattern in the transportation process. During the transportation of oil and gas from the hydrocarbon reservoir to the final destination, the flow direction of the mixture in pipelines is mainly changed by the bend orientation. The bend orientation obviously changes the distributions of the liquid film and sand particles in annular flow, and this would further affect the sand erosion in elbows. Computational Fluid Dynamics (CFD) is an efficient tool to investigate the issues of sand erosion in multiphase flow. In the present work, a CFD-based numerical model is adopted to analyze the effects of bend orientation on sand erosion in elbows for annular flow. Volume of Fluid (VOF) method is adopted to simulate the flow field of annular flow, and sand particles in the flow field are tracked by employing Discrete Particle Model (DPM) simultaneously. Then, the particle impingement information is combined with the erosion model to obtain the maximum erosion ratio. The present numerical model is validated by experiments conducted in vertical-horizontal upward elbows. Finally, the effects of various bend orientations on the erosion magnitude are investigated according to the numerical simulations.


2011 ◽  
Vol 204-210 ◽  
pp. 453-457
Author(s):  
Zhen Yu Zhong

It is proposed the method based on particle movement to simulate flow in this paper. The force on particles can be obtained from N-S equations, and the calculation error caused by particles’ simulation is discussed. Results show that the method is more effective through the example of flow field affected by the cube. The advantage of this method is to solve problems of multiphase flow and fluid-structure interaction.


2021 ◽  
Vol 35 (1) ◽  
pp. 51-59
Author(s):  
Naoki KIDO ◽  
Akiko KANEKO ◽  
Yutaka ABE ◽  
Masatoshi IKE

Sign in / Sign up

Export Citation Format

Share Document