scholarly journals Obtaining New Potato Cultivars with Late Blight Resistance and Adapted to Climate Change Using Participatory Varietal Selection

Author(s):  
Noemí Zúñiga ◽  
Manuel Gastelo ◽  
Carolina Bastos ◽  
Jhercy Reyes ◽  
Edson Alania ◽  
...  
2007 ◽  
Vol 84 (5) ◽  
pp. 385-392 ◽  
Author(s):  
Mateo Armando Cadena-Hinojosa ◽  
Margarita Díaz-Valasis ◽  
Remigio A. Guzmán-Plazola ◽  
Sylvia Fernández-Pavía ◽  
Niklaus J. Grünwald

Plant Disease ◽  
2021 ◽  
Author(s):  
Weiya Xue ◽  
Kathleen G. Haynes ◽  
Xinshun Qu

Resistance to late blight, caused by Phytophthora infestans clonal lineage US-23, in 217 old and modern potato cultivars was evaluated in field trials in 2016 and 2017 in Pennsylvania. Significant differences in resistance were found among these cultivars (P < 0.0001). Significant interaction between cultivars and environments was found (P < 0.0001). The values of relative area under the disease progress curve ranged from 0 to 0.5841 in 2016 and from 0 to 0.5469 in 2017. Broad-sense heritability of late blight resistance was estimated to be 0.91 with a 95% confidence interval of 0.88 to 0.93. Cluster analysis classified the cultivars into 5 groups: resistant, moderately resistant, intermediate, moderately susceptible, and susceptible. Thirty cultivars showing resistance and 32 cultivars showing moderate resistance were identified. The 217 cultivars were also evaluated for foliar maturity, tuber yield and resistance to early blight, caused by Alternaria solani. A few cultivars with late blight resistance independent of late maturity were found. Late blight resistance and early blight resistance were positively correlated, and 17 cultivars possessed resistance to both diseases. Yield tradeoff associated with late blight resistance was not observed among the cultivars in the absence of disease pressure.


2019 ◽  
Vol 106 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Eve Runno-Paurson ◽  
Merili Hansen ◽  
Katrin Kotkas ◽  
Helina Nassar ◽  
Ingrid H. Williams ◽  
...  

2006 ◽  
Vol 53 (3) ◽  
pp. 384-389 ◽  
Author(s):  
M. P. Beketova ◽  
P. E. Drobyazina ◽  
E. E. Khavkin

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nam Phuong Kieu ◽  
Marit Lenman ◽  
Eu Sheng Wang ◽  
Bent Larsen Petersen ◽  
Erik Andreasson

AbstractThe use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes. In this article, we present the mutation and screening of seven putative S-genes in potatoes, including two DMR6 potato homologues. Using a CRISPR/Cas9 system, which conferred co-expression of two guide RNAs, tetra-allelic deletion mutants were generated and resistance against late blight was assayed in the plants. Functional knockouts of StDND1, StCHL1, and DMG400000582 (StDMR6-1) generated potatoes with increased resistance against late blight. Plants mutated in StDND1 showed pleiotropic effects, whereas StDMR6-1 and StCHL1 mutated plants did not exhibit any growth phenotype, making them good candidates for further agricultural studies. Additionally, we showed that DMG401026923 (here denoted StDMR6-2) knockout mutants did not demonstrate any increased late blight resistance, but exhibited a growth phenotype, indicating that StDMR6-1 and StDMR6-2 have different functions. To the best of our knowledge, this is the first report on the mutation and screening of putative S-genes in potatoes, including two DMR6 potato homologues.


2013 ◽  
Vol 164 ◽  
pp. 9-16 ◽  
Author(s):  
Younghoon Park ◽  
Jihyun Hwang ◽  
Kwanghwan Kim ◽  
Jumsoon Kang ◽  
Byungsup Kim ◽  
...  

2014 ◽  
Vol 49 (2) ◽  
pp. 141-161 ◽  
Author(s):  
R. Hajianfar ◽  
Zs. Polgár ◽  
I. Wolf ◽  
A. Takács ◽  
I. Cernák ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document