Genetic characterization of late blight resistance in Solanum pimpinellifolium accession PI 270442

2018 ◽  
Vol 10 (1) ◽  
pp. 13-32
Author(s):  
Matthew T. Sullenberger ◽  
Majid R. Foolad
2006 ◽  
Vol 131 (5) ◽  
pp. 637-645 ◽  
Author(s):  
Min-Jea Kim ◽  
Martha A. Mutschler

Sixteen tomato [Solanum lycopersicum L. (syn. Lycopersicon esculentum Mill.)] genotypes (inbred lines or hybrids) were tested against five Phytophthora infestans (Mont.) deBary isolates to characterize race specificity of late blight resistance transferred to tomato from Solanum pimpinellifolium L. [syn. Lycopersicon pimpinellifolium (L.) Mill.] accession L3708. The effects of plant genotype, isolate, genotype × isolate, and isolate × replication interactions were highly significant (P = 0.001). Set of four sister lines fixed for late blight resistance (CU-R lines) exhibited full and equal resistance to the five pathogen isolates tested. In contrast, the heterozygous F1 hybrids, created by crossing the resistant CU-R lines with a susceptible parent, were resistant to US-11; partially resistant to US-17, NC-1, and DR4B; and susceptible to US-7. Differential responses were also observed across pathogen isolates on a set of resistant sister lines (CLN-R lines), which also were bred from L3708. The CLN-R lines were resistant to the DR4B, NC-1, and US-11 isolates, but showed significant disease-affected areas and sporangium numbers following inoculation with either US-7 or US-17. Restriction fragment length polymorphism (RFLP) analysis confirms that both CU-R and CLN-R are homozygous for the Ph-3 gene derived from L3708. Since progeny tests also confirmed that the CLN-R lines are fixed for their level of resistance, these results suggest that late blight resistance in the CU-R lines is not controlled by Ph-3 alone, and that at least one additional gene conferring late blight resistance is missing from the CLN-R lines. Results of genetic tests of the (CU-R × CLN-R) F1 and a (CU-R × CLN-R) F2 population with the pathogen isolate US-17 strongly support a model in which resistance of the CU-R lines requires genes in addition to Ph-3. The implications of this information in breeding for late blight resistance and using of the resulting resistant lines or hybrids are discussed.


2021 ◽  
Vol 57 (No. 4) ◽  
pp. 279-288
Author(s):  
Jose Ignacio Ruiz de Galarreta ◽  
Alba Alvarez-Morezuelas ◽  
Nestor Alor ◽  
Leire Barandalla ◽  
Enrique Ritter

The oomycete Phytophthora infestans is responsible for the disease known as late blight in potato and tomato. It is the plant pathogen that has caused the greatest impact on humankind so far and, despite all the studies that have been made, it remains the most important in this crop. In Spain during the last years a greater severity of the disease has been observed in both, potato and tomato, probably due to genetic changes in pathogen populations described recently. The aim of this study was the characterization of the physiological strains of 52 isolates of P. infestans obtained in different potato-growing areas in Spain. For this purpose, inoculations on detached leaves were performed in order to determine compatibility or incompatibility reactions. A total of 17 physiological races were found. The less frequent virulence factors were Avr5 and Avr8. By studying the epidemiology of the pathogen, a specific breeding program for late blight resistance can be implemented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nam Phuong Kieu ◽  
Marit Lenman ◽  
Eu Sheng Wang ◽  
Bent Larsen Petersen ◽  
Erik Andreasson

AbstractThe use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes. In this article, we present the mutation and screening of seven putative S-genes in potatoes, including two DMR6 potato homologues. Using a CRISPR/Cas9 system, which conferred co-expression of two guide RNAs, tetra-allelic deletion mutants were generated and resistance against late blight was assayed in the plants. Functional knockouts of StDND1, StCHL1, and DMG400000582 (StDMR6-1) generated potatoes with increased resistance against late blight. Plants mutated in StDND1 showed pleiotropic effects, whereas StDMR6-1 and StCHL1 mutated plants did not exhibit any growth phenotype, making them good candidates for further agricultural studies. Additionally, we showed that DMG401026923 (here denoted StDMR6-2) knockout mutants did not demonstrate any increased late blight resistance, but exhibited a growth phenotype, indicating that StDMR6-1 and StDMR6-2 have different functions. To the best of our knowledge, this is the first report on the mutation and screening of putative S-genes in potatoes, including two DMR6 potato homologues.


2013 ◽  
Vol 164 ◽  
pp. 9-16 ◽  
Author(s):  
Younghoon Park ◽  
Jihyun Hwang ◽  
Kwanghwan Kim ◽  
Jumsoon Kang ◽  
Byungsup Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document